- 博客(685)
- 收藏
- 关注
原创 AI大模型不再是博士生的高端局,教授开源大模型核心代码,看完直接起飞!
全球顶尖高校还在用他的学术专著"手搓"大模型时,这位威斯康辛大学终身教授直接掀了牌桌——把价值千万美元的工业级训练框架全数开源!GitHub仓库瞬间引爆,4万开发者疯狂星标,百万行生产级代码赤裸裸公开,硬是将大模型训练从"博士专属"降维成"全民运动"。
2025-05-20 17:33:54
42
原创 我用Dify+数据库+Echarts搭建了一个能“听懂”人话的数据可视化助手!(含自然语言转SQL)
我将手把手带你利用dify的工作流编排能力和大型语言模型(LLM),搭建一个能“听懂”我们自然语言指令,自动查询数据库、判断图表类型,并最终生成酷炫Echarts图表的数据可视化助手!
2025-05-15 21:18:52
992
原创 【Qwen2.5大模型微调实战】医疗命名实体识别(NER)任务(附完整代码)
本文我们将简要介绍基于 transformers、peft 等框架,使用 Qwen2.5-1.5B-Instruct 模型在 医学命名实体识别数据集(取2000条) 上进行Lora微调训练,同时使用 SwanLab 监控训练过程与评估模型效果。
2025-05-15 21:12:49
852
原创 全网最全2.6W字综述,深入浅出大模型核心技术:微调、推理与优化指南!
本文全面梳理了大模型的各方面知识点,包括参数微调(PEFT)技术,适配器、LoRA和QLoRA,同时介绍了提示策略、模型压缩方法(如剪枝和量化),以及各种量化技术(GPTQ、NF4、GGML)。最后,对用于减小模型大小的蒸馏和剪枝技术也进行了讲解,希望对大家有帮助!
2025-05-13 11:37:24
1140
原创 NVIDIA 实现通义千问 Qwen3 的生产级应用集成和部署
下面以使用 Qwen3-4B 模型配置 PyTorch backend 为例,描述如何快捷进行基准测试以及服务化的工作。采用类似的步骤,也可以实现 Qwen3 其他 Dense 和 MoE 模型的推理部署优化。
2025-05-09 16:54:40
966
原创 浙大开源《大模型基础》爆火!技术人速来围观!
最近技术圈被一本神书刷屏了——浙江大学团队开源的《大模型基础》!推特大佬们疯狂安利,小编连夜啃完,果然名不虚传!
2025-05-09 16:49:39
486
原创 Dify 保姆级教程之:零代码打造票据识别专家
相信实操过的同学对Dify的基本组件已有所了解,本篇我们继续熟悉Dify中另外一个重要概念 –条件分支,带你零代码打造一个票据识别专家。自从有了Dify,代码小白也可以轻松打造智能体,你需要做的只是在页面点点点而已!先给大家展示下搭建完成的流程图这里面大致流程:用户上传一张发票图片,发票类型识别大模型判断发票类型,然后通过条件分支分发给不同的票据识别大模型,给出识别结果。接下来,我们一步一步搞定它!首先,我们来搞定单个分支,跑通单类型票据识别的流程。
2025-05-07 15:42:38
544
原创 大模型书籍热门推荐:又一本开源免费的大模型书来了,449页pdf!免费分享
然而,目前以大模型技术为主线介绍自然语言处理知识的教材较为缺乏。近年以来,以ChatGPT 为代表的生成式预训练对话人工智能技术(即大语言模型,简称大模型)取得了令人瞩目的进展,给基于统计方法的自然语言处理技术带来了前所未有的进步。在当今人工智能时代,NLP 技术已经深刻地渗透到我们日常生活的方方面面,从智能助手、语音识别到机器翻译和文本生成,NLP 正以惊人的速度改变着我们的生活方式。特别的是,2022 年底以 ChatGPT 为代表的大模型技术横空出世,进一步推动了新一代人工智能技术的发展。
2025-05-05 15:04:15
290
原创 LLaMA Factory多模态微调实践:微调Qwen2-VL构建文旅大模型
LLaMA Factory是一款开源低代码大模型微调框架,集成了业界最广泛使用的微调技术,支持通过 Web UI 界面零代码微调大模型,目前已经成为开源社区内最受欢迎的微调框架之一,GitHub 星标超过 4.7 万。本教程将基于通义千问团队开源的新一代多模态大模型 Qwen2-VL-2B-Instruct,介绍如何使用 矩池云 平台及 LLaMA Factory 训练框架完成文旅领域大模型的构建。GitHub地址:https://github.com/hiyouga/LLaMA-Factory一。
2025-05-01 09:30:00
1040
原创 一文剖析大模型、RAG、Agent、MCP、Function Calling、知识库、向量数据库、知识图谱、AGI 的区别和联系
Function Calling 是一种强大的工具,它为大语言模型提供了与外部工具和服务交互的能力,从而解决了大模型知识更新停滞的问题。然而,它的局限性在于缺乏跨模型的一致性和平台依赖性。尽管如此,Function Calling 仍然是一个重要的技术,尤其是在需要快速实现特定功能时。未来,随着技术的不断发展,我们期待看到更多能够克服这些局限性的解决方案。
2025-04-28 15:45:13
660
原创 从0到1打造企业级AI售前机器人——实战指南二:RAG工程落地之数据处理篇[特殊字符]
RAG工程的内容有些多,怕大家看着太累,还是决定分成两个部分发。本文我们了解了RAG的原理、数据的处理方案、以及实战中的数据应用方案。只能进行文本回复,无法提供相关的图片、视频等能力。如果用户query不标准,问题不全,我们的知识库可能匹配不到内容。知识库中的内容仍然存在匹配错误的情况。例如:用户问A产品的价钱,我们知识库筛选出了B产品的价钱,然后回复给了用户。经典的中文二义性问题。用户的问题可以用A来回答,也可以用B来回答,怎么办?所以下一篇,我们将会完成RAG工程,来解决上述四个问题。
2025-04-28 15:42:14
1094
原创 【厦大大模型报告】每个人都可以读懂的DeepSeek大模型科普,PDF全141页
厦大团队出品的《每个人都可以读懂的大模型科普系列报告》,该系列报告包括了四大部分(面向普通大众的,面向企业的,面向高校的,面向政府的),系列报告在全网浏览量已经远超过1000万。
2025-04-25 16:04:06
267
原创 国内本地部署FastGPT知识库(FastGPT+ChatGLM3+m3e),搭建属于自己的“备忘录”
大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。位置: \wsl.localhost\Ubuntu\home\csc\fastgpt。位置: \wsl.localhost\Ubuntu\home\csc\fastgpt。大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。
2025-04-21 15:10:08
1008
原创 从Transformer到ChatGPT:一本让你看懂大模型所有黑箱的“保姆级“教程
项目地址:https://github.com/rasbt/LLMs-from-scratch/tree/main?作为开源软件的热情支持者,Sebastian在过去十多年里一直是积极的贡献者。值得一提的是,Sebastian Raschka在GitHub上开源了与这本书配套的代码库,为研究者和实践者提供了宝贵的资源。以清晰的语言、图表和示例,详细解释了从设计创建到采用通用语料库预训练,再到针对特定任务进行微调的每个阶段。,该书致力于阐述从零开始构建大型语言模型的完整过程,包括模型的创建、训练和调整。
2025-04-16 15:23:16
435
原创 使用KAG+多模态RAG+智能体建造强大的AI推理机器人
KAG(Knowledge-Aware Graph Generator,知识感知图生成器)框架是开源的,充分利用了知识图谱和 RAG 技术的互补优势。它不仅将图结构整合到知识库中,还将知识图谱的语义类型、关系和知识图谱问答(KGQA,Knowledge Graph Question Answering)整合到 KAG 中。KAG 框架具有几个重要功能,使其在专业环境中回答问题时表现更出色。
2025-04-14 16:14:02
617
原创 如何为你的业务选择最合适的 RAG 架构?
最近,有篇讲缓存增强生成 (Cache-Augmented Generation, CAG) 的论文火了一下,被称为 RAG 的新技术。我们知道了 RAG 是怎么回事,下面简单说说 CAG:RAG 与 CAG 对比。
2025-04-11 14:52:31
952
原创 内行人都在学的大模型黑书——外网爆火的LLM应用手册来了!
Transformer 是工业化、同质化的后深度学习模型,其设计目标是能够在高性能计算机(超级计算机)上以并行方式进行计算。通过同质化,一个Transformer 模型可以执行各种任务,而不需要微调。Transformer 使用数十亿参数在数十亿条原始未标注数据上进行自监督学习。这些后深度学习架构称为基础模型。基础模型Transformer 是始于 2015年的第四次工业革命的一部分(通过机器-机器自动化将万物互联)。
2025-04-07 14:33:10
872
原创 Llama 4架构解析与本地部署指南:MoE模型在170亿参数下的效率突破
Meta推出的16专家与128专家配置的Llama 4模型,标志着开源大语言模型发展迈出重要一步。通过采用混合专家(MoE)架构,Meta在持续突破模型性能边界的同时,有效应对了AI模型规模扩展带来的计算挑战。Scout与Maverick采用不同专家数量的设计,表明Meta正在积极探索模型容量、推理效率与任务性能之间的最优平衡点。随着这些模型向研究社区和开发者开放,我们有望获得关于如何最佳利用MoE架构的丰富新见解。
2025-04-07 14:30:00
1258
原创 基于千问+LangChain构建垂直领域大模型应用:电商场景实际案例(附完整源码)
本文以电商客服投诉处理为场景,展示了如何通过LangChain框架与开源大模型构建垂直领域智能应用的完整路径。大家可以根据自己的实际场景进行动态调整。完整代码扫描下方二维码。
2025-04-05 10:15:00
1419
原创 基于LangChain与Ollama的API封装实战详解(含完整代码)
本文详细介绍了如何利用 LangChain 将大语言模型封装成 API 接口,并基于 FastAPI 构建了一个高性能、模块化的服务平台。
2025-04-04 10:00:00
728
原创 2024人工智能大模型技术财务应用蓝皮书丨附130页PDF下载
蓝皮书主要从人工智能大模型技术概述、人工智能大模型技术体系概述、人工智能大模型技术赋能财务概述、人工智能大模型技术赋能财务应用、人工智能大模型财务应用局限性和关注问题五大篇章进行阐述。
2025-04-03 14:05:01
294
原创 AI大模型应用实战:如何用langchain打造自己的AI工作流
LangChain 是一个功能强大的 AI 框架,专门用于构建基于大语言模型(LLM)的智能应用。它不仅提供了基础的 LLM 调用接口,还通过 Prompt 模板、记忆(Memory)、智能代理(Agents)、知识检索(Retrieval)等模块,让 AI 具备更强的推理、搜索、执行任务的能力。
2025-03-31 21:05:55
859
原创 构建图形RAG应用:利用知识图谱和AI增强医学期刊洞察
闭包是 JavaScript 中一个非常重要的概念,它允许函数访问并操作其词法作用域之外的变量。换句话说,闭包是一个函数以及其周围状态(词法环境)的捆绑。闭包是 JavaScript 中一个非常重要的概念,它允许函数访问并操作其词法作用域之外的变量。闭包具有访问外部变量、数据隐藏和状态保持等特性,在模块化、事件处理程序和回调函数等场景中都有广泛的应用。在使用闭包时,需要注意内存泄漏和性能问题。该应用程序和笔记本的随附代码在此处。知识图谱 (KG) 和大型语言模型 (LLM) 是天作之合。
2025-03-31 21:01:54
599
原创 大模型解读!中国人工智能大模型技术白皮书!
大模型技术,以其广阔的应用前景和巨大潜力,无疑成为了技术发展的焦点。然而,随之而来的挑战亦不容忽视:****可靠性、可解释性的难题需要我们去攻克,数据质量与数量的提升成为迫切需求,应用部署成本的降低与迁移能力的增强同样重要,而安全与隐私保护的强化更是关键中的关键。此外,探索更为贴合实际、具备落地价值的应用场景,亦是我们需要努力的方向。****这些挑战与机遇并存,将决定大模型技术未来的广泛应用与发展命运。
2025-03-28 11:21:17
1200
原创 超实用!用 Ollama + DeepSeek + Dify 搭建本地知识库,提升企业效率
Dify 是一个开源的 LLM(大语言模型)应用开发平台,功能超强大。它支持自定义 AI 工作流,能实现复杂任务自动化;还有 RAG 管道,通过检索增强生成技术,让文档检索和问答超准;多种主流 LLM 模型都能集成管理,还提供丰富的日志和监控功能。Dify 的架构也很清晰,分为模型层、数据处理层、应用层和管理层,能满足各种需求。通过 Ollama + DeepSeek + Dify 这个组合,企业可以轻松搭建本地知识库,提升内部信息管理效率。无论是文档检索、问答系统还是自动化工作流,都能轻松搞定。
2025-03-28 11:20:26
1159
原创 让知识图谱不再遥远:用 Ollama 和 Embeddings 快速搭建你的智能问答系统
你有没有遇到过这种情况:工作中需要快速查找资料,结果花了大把时间在一堆无关信息中苦苦挣扎?或者说,你公司里的数据海量,却无法高效地找到所需的关键知识?其实,你可能已经掌握了一项强大的工具——知识图谱(Knowledge Graph),而你还不知道如何用它提高效率。今天我们就来聊聊如何使用和这两个工具,来搭建自己的知识图谱,快速解决复杂问题。而且,这套方案不仅适合技术大牛,同样也适合技术小白,简单易上手。
2025-03-28 11:06:12
650
原创 基于Prometheus+夜莺+Deepseek+Dify构建告警分析智能体
目前市场上的大模型已经相对成熟,但大部分人都只是把它当成一个更加智能的对话机器人,使用方式也仅仅是你问我答,怎么用大模型来帮助我们更好的工作,甚至直接帮我们完成工作成为了日后发展不得不考虑的一个方向。于是有人提出了 AI Agent,先通过这张图片来了解一下什么是 AI Agent。「简单来说 AI Agent = 大模型 + 插件 + 工作流」,大模型能够根据事件需求自主调用工具和工作流来完成用户需求快到下班时间了,让 AI 总结一下今天的告警早上刚来到公司,让 AI 总结一下最近24小时的告警。
2025-03-26 15:12:42
1321
原创 5分钟带你看懂什么是大语言模型(LLM)
想象一下,你偶然发现了一份电影剧本,里面描述了一个人与他们的 AI 助手之间的对话场景。不过,剧本上 AI 的回应部分被撕掉了。现在,假设你有一台神奇的机器,它可以读取任何文本并预测下一个合理的单词。这样,你就可以利用这台机器来补全剧本–先输入已有的文本,让机器AI 该如何回复的第一个词,然后不断重复这个过程,逐步生成完整的对话。这其实就是聊天机器人背后的原理。一个大语言模型本质上就是一个,它能预测任何一段文本的下一个词。它并不是确定地选择一个词,而是会给所有可能的词分配一个。
2025-03-26 14:37:03
1096
原创 年薪40W!转AI产品经理后,我明白了有人带的意义在哪!
我是2年技术岗,纯纯的产品外行,对这个岗位也一知半解。经过半年才真正意义上落地了一套较为系统的产品经理工作方法!这套方法最后也帮我成功转岗AI产品经理,毕业2年拿到了年包40W的offer。如果你正想转岗/入行产品经理,我的故事或许能给你一些启示👇目标有了,问题也有了和很多人一样,毕业的时候比较迷茫,不知道自己喜欢什么行业、岗位…就按照专业找了一个对口且擅长的技术工作,先着陆。因为工作内容,我了解到了产品经理这个岗位,并对它产生了浓厚的兴趣,说来原因有很多:了解到当下AI产品经理薪资中位数36K,我立即给
2025-03-26 14:15:23
943
原创 DeepSeek R1本地化部署 Ollama + Chatbox 打造最强 AI 工具
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。的爆火,远不止于此。
2025-03-24 10:23:00
312
原创 快速构建和部署 RAGS:节省时间和最大化效率的逐步指南
检索增强型应用程序是 LLM 的主要用例之一。但是,大多数 RAG 应用程序使用相同的技术栈,因此工程师花费大量时间重复执行基础工作。我创建了一个模板项目,每当我想要启动一个 RAG 应用程序时,它都会帮助我。这是一篇关于此模板的文章。您可以窃取它来快速构建 RAG 应用程序并将其部署到空间中,或者创建一个与此类似的应用程序,并且永远不必再担心样板文件。
2025-03-24 10:15:07
907
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人