- 博客(707)
- 收藏
- 关注
原创 一文速通什么是AI Agent,Coze智能体怎么入门?
最近接触到想要复刻搭建智能体案例的小伙伴,但其对Coze平台的使用熟练度都不是很高。多数都属于初识阶段,面对学习中的卡点无从下手,这里对AI智能体以及Coze基础进行一次整体的介绍。
2025-06-10 16:26:00
582
原创 2025高薪、缺人的AI岗位!机遇与挑战并存,零成本快速入门大模型
随着 AI 技术赋能千行百业,今年,关于 AI 人才的需求大大增加,薪资待遇也水涨船高。如何快速入局?
2025-06-10 16:20:22
433
原创 大模型入门,从入门到精通,收藏这一篇就够了,最全面最详细的大模型合集,不容错过!值得收藏!!
文将为你介绍大模型是如何训练的,包括数据准备、模型架构、训练方法和硬件支持等方面。
2025-06-10 16:15:17
700
原创 MCP + n8n构建高效AI工作流
今天来点干货,本文将通过实战来展示MCP的强大拓展能力,当然它的强大之处也离不开外部的支持,比如支撑本次实战的n8n,下面简单介绍下什么是n8n
2025-06-07 17:06:25
575
原创 Embedding在LLM中的魔力:如何实现精准的文本匹配
在自然语言处理(NLP)领域,Embedding技术扮演着至关重要的角色。它将文本转换为计算机能够理解的数值形式,使得机器能够捕捉和处理文本之间的语义关系。尤其在大型语言模型(LLM)中,Embedding 技术更是实现精准文本匹配的核心。 Embedding 是指将高维度的数据(例如文字、图片、音频)映射到低维度空间的过程。embedding 向量通常是一个由实数构成的向量,它将输入的数据表示成一个连续的数值空间中的点。简单来说,embedding 就是一个N维的实值向量,它几乎可以用来表示任何事情,如文
2025-06-07 17:03:18
772
原创 《AI赋能:企业智能化应用实践》附PDF免费下载
本书是一本介绍AI技术在企业生产和运营过程中实践应用的图书,全书共6章:智能化应用的概念,智能化应用的价值、挑战及发展趋势,智能化技术概述,多行业智能化应用业务场景分析,智能化应用的项目化实施和智能化应用的实践案例。
2025-06-07 17:01:51
641
原创 如何微调推理大模型?以Qwen3/DeepSeek-R1为例
刚好最近在做一个推理训练任务,现在有现成的训练集,推理模型这么强的情况下,怎么把之前传统对话大模型+指令微调训练模式 转变成推理大模型+指令微调任务?
2025-06-04 14:43:46
584
原创 LLaMA Factory:微调DeepSeek-R1-Distill-Qwen-7B模型实现新闻标题分类器
本教程将基于深度求索公司开源的 DeepSeek-R1-Distill-Qwen-7B 模型(以 Qwen2.5-Math-7B 为基模型从 DeepSeek-R1 蒸馏得到),介绍如何使用 PAI 平台及 LLaMA Factory 训练框架微调得到新闻标题分类器:给定新闻的类别范围,通过自然语言触发新闻标题分类的功能,并以特定的格式进行返回
2025-06-04 14:35:44
1134
原创 又一本开源免费的大模型书来了,449页pdf!
《自然语言处理:大模型理论实践》(预览版)一书以自然语言处理中语言模型为主线, 涵盖了从基础理论到高级应用的全方位内容,逐步引导读者从基础的自然语言处理技术走向大模型的深度学习与实际应用。
2025-06-03 15:30:34
624
原创 如何微调推理大模型?以Qwen3/DeepSeek-R1为例
通过能力比较强的推理大模型底座将之前指令数据集蒸馏为思维链数据集,然后进行筛选过滤。具体做法我们可以参考刘聪大佬开源的Chinese-DeepSeek-R1-Distill-data-110k,大致流程是调用企业版满血R1 API,然后数据生成结果进行了二次校验,并保留了评价分数:
2025-06-03 15:28:24
805
原创 如何微调你的第一个领域大模型?
微调(Fine-tuning)大模型,就像是给一个已经学富五车的大脑(预训练的基础大模型),进行一次针对性的“专业强化训练”。基础大模型通过海量数据学习了通用的语言规律和世界知识,但对于特定领域、特定任务,它可能还不够“精通”。微调就是利用少量、高质量的领域数据,在基础模型之上继续训练,让模型更好地适应新的任务或领域。也就是让大模型从一个广度很强的通才,在某个领域树上的技能加强变成一位专才。
2025-06-03 15:26:30
846
原创 中国大模型爆发:大模型落地应用案例集,30+应用案例已落地
今天给大家带来的是《大模型落地应用案例集》,在大部分用户还停留在聊天式的AI对话时,很多行业已经开始悄悄的落地赋能行业能力了,这篇案例集覆盖了医疗、金融、制造、教育等10余个行业,京东、阿里、华为等头部企业的实践尤为亮眼。例如,MiniMax的医疗大模型助力肿瘤患者精准用药,昆仑万维“天工”大模型通过国家备案并实现高效金融风险评估,而商飞则用大模型将飞机设计效率提升千倍。这些案例不仅展示了技术如何解决行业痛点,还揭示了“大模型+垂直场景”的商业模式创新,如按调用量付费、私有化部署等。
2025-06-01 09:30:00
288
原创 使用 Unsloth 快速微调 LLMs 实用指南
大型语言模型(LLM)虽然具备强大的通用能力,但在实际生产部署中往往面临诸多挑战。要使它们真正满足企业级需求,必须确保模型能够:
2025-05-30 20:09:08
1010
原创 详细介绍!RAG 和 GraphRAG:了解何时(When)、如何(How)使用它们
检索增强生成(RAG)主要目的是为了大模型引入外部知识,减少大模型幻觉,是目前大模型应用开发中必不可少的技术之一。但是传统RAG主要是通过语义相似度在向量空间中进行检索,无法捕获数据库中数据点之间的依赖关系。为此,GraphRAG应运而生。本文将详细介绍传统RAG技术、GraphRAG技术、两者之间的优缺点以及如何将两者结合使用。本文结构安排:
2025-05-30 19:41:49
1017
原创 2024人工智能大模型技术财务应用蓝皮书丨附130页PDF下载
蓝皮书主要从人工智能大模型技术概述、人工智能大模型技术体系概述、人工智能大模型技术赋能财务概述、人工智能大模型技术赋能财务应用、人工智能大模型财务应用局限性和关注问题五大篇章进行阐述。
2025-05-29 15:23:25
418
原创 LangChain RAG入门教程:构建基于私有文档的智能问答助手
本文详述了如何通过检索增强生成(RAG)技术构建一个能够利用特定文档集合回答问题的AI系统。通过LangChain框架,可以实现超越预训练模型知识范围的定制化问答能力,适用于专业领域的精准信息检索与生成。
2025-05-29 15:22:06
652
原创 轻松上手,0代码用MCP Server搭建企业级文档处理智能体
MCP诞生时间并不长,但能在短时间内引发这么多关注,我想原因可能就来自于它连接“万物”的设计特殊性,像积木一样把各类AI能力拼装起来,合体成更强的Agent。
2025-05-29 14:37:48
780
原创 AI大模型报告 | 腾讯云《AI大模型应用发展研究报告》(附PDF免费下载)
**《2024年AI大模型应用发展研究报告》** 深入探讨了AI大模型在电信行业的应用前景,特别是电信运营商与云服务商在该领域的合作机会。报告指出,随着AI技术的快速发展,大模型已成为推动行业创新的关键因素。电信运营商凭借其丰富的数据资源和网络基础设施,与云服务商的技术优势相结合,共同探索AI大模型的多元化发展。
2025-05-26 16:03:01
407
原创 在文本分类任务上,Qwen3-0.6B真的比Bert效果好么?
最近在知乎上刷到一个很有意思的提问Qwen3-0.6B这种小模型有什么实际意义和用途。查看了所有回答,有人提到小尺寸模型在边缘设备场景中的优势(低延迟)、也有人提出小模型只是为了开放给其他研究者验证scaling law(Qwen2.5系列丰富的模型尺寸为开源社区验证方法有效性提供了基础)、还有人说4B、7B的Few-Shot效果就已经很好了甚至直接调用更大的LLM也能很好的解决问题。让我比较感兴趣的是有大佬提出小模型在向量搜索、命名实体识别(NER)和文本分类领域中很能打,而另一个被拿来对比的就是Bert
2025-05-26 15:43:03
797
原创 Dify+Ollama+Qwen3案例实战:10分钟实现AI业务数据查询
Qwen3是阿里巴巴于2025年4月29日发布的新一代开源大模型系列,作为通义千问(Qwen)家族的最新成员,它在性能、架构设计和应用场景上实现了多项突破。以下是核心特点:
2025-05-23 15:28:57
1060
原创 AI大模型详解!中国人工智能大模型技术白皮书!
近期,中国人工智能协会发布了《中国人工智能大模型技术白皮书》,系统梳理了大模型技术演进,深入探讨关键技术要素,并剖析当前挑战及未来展望。我为大家做了简要总结,并附上原文供深入阅读。
2025-05-23 15:18:02
1040
原创 零代码搞定!DeepSeek R1+RAG本地部署指南:从Ollama配置到知识库构建
零代码搞定!DeepSeek R1+RAG本地部署指南:从Ollama配置到知识库构建
2025-05-21 14:16:27
758
原创 【Qwen3实战】Dify+Qwen3+Echarts案例实战:实现数据库数据可视化分析
本案例可实现数据和图表合并输出,用户通过自然语言询问,通过大模型转换为sql语言,然后查询数据库并返回数据,再通过大模型将数据转换为标准Echarts格式数据,最终实现从用户自然语言提问到生成图文并茂可视化报告的全流程自动化。
2025-05-21 14:04:45
859
原创 AI大模型不再是博士生的高端局,教授开源大模型核心代码,看完直接起飞!
全球顶尖高校还在用他的学术专著"手搓"大模型时,这位威斯康辛大学终身教授直接掀了牌桌——把价值千万美元的工业级训练框架全数开源!GitHub仓库瞬间引爆,4万开发者疯狂星标,百万行生产级代码赤裸裸公开,硬是将大模型训练从"博士专属"降维成"全民运动"。
2025-05-20 17:33:54
147
原创 我用Dify+数据库+Echarts搭建了一个能“听懂”人话的数据可视化助手!(含自然语言转SQL)
我将手把手带你利用dify的工作流编排能力和大型语言模型(LLM),搭建一个能“听懂”我们自然语言指令,自动查询数据库、判断图表类型,并最终生成酷炫Echarts图表的数据可视化助手!
2025-05-15 21:18:52
1087
原创 【Qwen2.5大模型微调实战】医疗命名实体识别(NER)任务(附完整代码)
本文我们将简要介绍基于 transformers、peft 等框架,使用 Qwen2.5-1.5B-Instruct 模型在 医学命名实体识别数据集(取2000条) 上进行Lora微调训练,同时使用 SwanLab 监控训练过程与评估模型效果。
2025-05-15 21:12:49
875
原创 全网最全2.6W字综述,深入浅出大模型核心技术:微调、推理与优化指南!
本文全面梳理了大模型的各方面知识点,包括参数微调(PEFT)技术,适配器、LoRA和QLoRA,同时介绍了提示策略、模型压缩方法(如剪枝和量化),以及各种量化技术(GPTQ、NF4、GGML)。最后,对用于减小模型大小的蒸馏和剪枝技术也进行了讲解,希望对大家有帮助!
2025-05-13 11:37:24
1163
原创 NVIDIA 实现通义千问 Qwen3 的生产级应用集成和部署
下面以使用 Qwen3-4B 模型配置 PyTorch backend 为例,描述如何快捷进行基准测试以及服务化的工作。采用类似的步骤,也可以实现 Qwen3 其他 Dense 和 MoE 模型的推理部署优化。
2025-05-09 16:54:40
998
原创 浙大开源《大模型基础》爆火!技术人速来围观!
最近技术圈被一本神书刷屏了——浙江大学团队开源的《大模型基础》!推特大佬们疯狂安利,小编连夜啃完,果然名不虚传!
2025-05-09 16:49:39
493
原创 Dify 保姆级教程之:零代码打造票据识别专家
相信实操过的同学对Dify的基本组件已有所了解,本篇我们继续熟悉Dify中另外一个重要概念 –条件分支,带你零代码打造一个票据识别专家。自从有了Dify,代码小白也可以轻松打造智能体,你需要做的只是在页面点点点而已!先给大家展示下搭建完成的流程图这里面大致流程:用户上传一张发票图片,发票类型识别大模型判断发票类型,然后通过条件分支分发给不同的票据识别大模型,给出识别结果。接下来,我们一步一步搞定它!首先,我们来搞定单个分支,跑通单类型票据识别的流程。
2025-05-07 15:42:38
601
原创 大模型书籍热门推荐:又一本开源免费的大模型书来了,449页pdf!免费分享
然而,目前以大模型技术为主线介绍自然语言处理知识的教材较为缺乏。近年以来,以ChatGPT 为代表的生成式预训练对话人工智能技术(即大语言模型,简称大模型)取得了令人瞩目的进展,给基于统计方法的自然语言处理技术带来了前所未有的进步。在当今人工智能时代,NLP 技术已经深刻地渗透到我们日常生活的方方面面,从智能助手、语音识别到机器翻译和文本生成,NLP 正以惊人的速度改变着我们的生活方式。特别的是,2022 年底以 ChatGPT 为代表的大模型技术横空出世,进一步推动了新一代人工智能技术的发展。
2025-05-05 15:04:15
300
原创 LLaMA Factory多模态微调实践:微调Qwen2-VL构建文旅大模型
LLaMA Factory是一款开源低代码大模型微调框架,集成了业界最广泛使用的微调技术,支持通过 Web UI 界面零代码微调大模型,目前已经成为开源社区内最受欢迎的微调框架之一,GitHub 星标超过 4.7 万。本教程将基于通义千问团队开源的新一代多模态大模型 Qwen2-VL-2B-Instruct,介绍如何使用 矩池云 平台及 LLaMA Factory 训练框架完成文旅领域大模型的构建。GitHub地址:https://github.com/hiyouga/LLaMA-Factory一。
2025-05-01 09:30:00
1195
原创 一文剖析大模型、RAG、Agent、MCP、Function Calling、知识库、向量数据库、知识图谱、AGI 的区别和联系
Function Calling 是一种强大的工具,它为大语言模型提供了与外部工具和服务交互的能力,从而解决了大模型知识更新停滞的问题。然而,它的局限性在于缺乏跨模型的一致性和平台依赖性。尽管如此,Function Calling 仍然是一个重要的技术,尤其是在需要快速实现特定功能时。未来,随着技术的不断发展,我们期待看到更多能够克服这些局限性的解决方案。
2025-04-28 15:45:13
689
原创 从0到1打造企业级AI售前机器人——实战指南二:RAG工程落地之数据处理篇[特殊字符]
RAG工程的内容有些多,怕大家看着太累,还是决定分成两个部分发。本文我们了解了RAG的原理、数据的处理方案、以及实战中的数据应用方案。只能进行文本回复,无法提供相关的图片、视频等能力。如果用户query不标准,问题不全,我们的知识库可能匹配不到内容。知识库中的内容仍然存在匹配错误的情况。例如:用户问A产品的价钱,我们知识库筛选出了B产品的价钱,然后回复给了用户。经典的中文二义性问题。用户的问题可以用A来回答,也可以用B来回答,怎么办?所以下一篇,我们将会完成RAG工程,来解决上述四个问题。
2025-04-28 15:42:14
1108
原创 【厦大大模型报告】每个人都可以读懂的DeepSeek大模型科普,PDF全141页
厦大团队出品的《每个人都可以读懂的大模型科普系列报告》,该系列报告包括了四大部分(面向普通大众的,面向企业的,面向高校的,面向政府的),系列报告在全网浏览量已经远超过1000万。
2025-04-25 16:04:06
278
原创 国内本地部署FastGPT知识库(FastGPT+ChatGLM3+m3e),搭建属于自己的“备忘录”
大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。位置: \wsl.localhost\Ubuntu\home\csc\fastgpt。位置: \wsl.localhost\Ubuntu\home\csc\fastgpt。大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。
2025-04-21 15:10:08
1057
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人