yolov5目标检测用IOU提高预测准确[yolo-you only look once]

文章讨论了YOLO模型在预测多个边界框时如何通过IOU非极大值抑制(NMS)算法来确定最终的检测结果,避免因概率最高但可能漏检其他对象(如概率为0.91的金毛)而造成的误判。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

yolo预测出了多个边界框,我们选择哪一个呢?

不可以选择最大概率的框。以狗狗举例,概率分别为0.9;0.7;0.6,若画面中还有其他的狗狗的概率框为0.91,那么就会漏掉所见到的可爱的金毛。会漏检。

采用IOU交并比的NMS(非极大值抑制)解决(Intersection over Union)

yolo会把最大概率的边界框先拉出来,和其他框进行对比,进行iou的计算

当iou的数值大于给定的阈值如0.5,则保留;如果没有大于0.5的框就丢弃掉

当剩下的iou有好几个都是大于0.5的,yolo就会保留最大的作为边界框。这应该就是NMS的过程。

如果画面中会有其他的猫或者狗

不同的猫与猫 不同的狗与狗之间是不会有框的交集的,因此在做iou计算时彼此并没有影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值