PyTorch中的CPU和GPU代码实现详解

PyTorch中的CPU和GPU代码实现详解

在深度学习的开发过程中,计算资源的高效利用是至关重要的。PyTorch作为一种流行的深度学习框架,支持使用CPUGPU进行模型训练和推理。相较于CPU,GPU由于其强大的并行计算能力,能够显著加速深度学习任务。然而,将PyTorch代码从CPU版本迁移到GPU版本需要进行一些额外的代码修改。本文将详细介绍如何在PyTorch中编写支持CPU和GPU的代码,以及需要特别注意的事项。

1. 安装PyTorch

首先,确保你已经安装了支持GPU的PyTorch版本。如果还没有安装,可以参考以下命令进行安装:

# For CUDA 11.1
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu111

2. 编写支持CPU和GPU的PyTorch代码

2.1模型定义

定义模型的代码在CPU和GPU版本中基本一致。但是,我们需要确保模型可以在GPU上运行。

import torch
import torch.nn as nn
import torch.optim as optim

class SimpleNN(nn.Module):
    def __init__(self):
        super(SimpleNN, self).__init__()
        self.fc = nn.Linear(784, 10)

    def forward(self, x):
        return self.fc(x)

model = SimpleNN()

2.2数据加载

数据加载部分对于CPU和GPU是相同的。使用DataLoader类加载数据:

在这里插入代码片from torchvision import datasets, transforms

transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值