自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2006)
  • 收藏
  • 关注

原创 【AI黑科技】北大团队放大招!6个维度精准增强,8.9万条SQL数据集让模型少走三年弯路!

北大团队推出TEXT2SQL-FLOW框架,通过六维度精准增强和自动化流程,生成89544条高质量SQL数据集SQLFLOW。该数据集解决了Text-to-SQL任务中数据规模小、样式单一的问题,开源模型微调后准确率最高提升31.8个百分点,闭源模型检索效果逼近真实SQL检索上限。SQLFLOW不仅解决了AI时代数据瓶颈,更为模型开发提供了高质量数据支持,显著降低开发成本与时间。

2026-01-11 09:00:00 1209

原创 震惊!大模型竟是这样“学会“的?深度解析LLM训练范式与对齐技术,小白也能变大神!

文章解析了大型语言模型(LLM)的训练范式,对比了传统监督训练与GPT自监督预训练的区别,详细介绍了下一个词元预测、交叉熵损失等核心机制,以及人类在对齐阶段的关键作用。最后以DeepSeek R1为例,展示了纯强化学习、拒绝采样SFT等创新训练策略,以及MoE架构如何实现高效推理,为开发者提供了LLM训练的全面理解和技术参考。

2026-01-10 17:25:44 296

原创 AI Agent内卷加剧!2026年四大核心技术趋势揭秘,从MCP到RaaS,小白程序员也能秒变大模型开发“卷王“!

2026年企业级AI Agent将迎来规模化应用拐点,四大核心技术趋势包括:MCP构建统一连接层实现大模型与外部工具安全连接;GraphRAG融合知识图谱确保知识响应一致性;AgentDevOps保障AI Agent行为质量与可靠性;RaaS让客户为业务成果付费而非软件访问权限。企业需从连接协议、知识口径、观测治理、结算口径四大维度构建可落地AI Agent,实现从通用能力到岗位专家的跃迁。

2026-01-10 17:23:38 573

原创 【AI开发】别再被大模型吓到!BLIP-2架构详解,Q-Former让视觉语言对齐so easy

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。它并不直接生成最终的文本输出,而是通过一组可学习的查询向量(learned queries)去“询问”图像编码器,提取最关键、最与语言相关的信息,并以一种“语言友好”的方式传递给 LLM。由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。那么你还想往下探索吗?

2026-01-10 17:22:52 498

原创 [特殊字符]大模型开发必备!Spring AI实现Text-to-SQL,Super-SQL踩坑实录,附完整代码!

文章介绍了使用Spring AI和Super-SQL框架实现自然语言转SQL的实战经验,分享了从项目配置到训练AI理解表结构的完整流程。通过RAG技术,Super-SQL将通用AI转变为"懂数据库的AI",提高了SQL生成的准确性。虽然存在Token限制等问题,但这种将AI与项目深度耦合的思路代表了未来发展方向。

2026-01-10 17:22:00 336

原创 上下文窗口卷到1亿Token也没用?MIT教大模型像程序员一样写代码,轻松处理千万级文本

MIT开发的递归语言模型(RLMs)解决了大模型处理长文本的瓶颈问题。该方法将长文本视为外部变量,让模型通过编写Python代码分块读取、检索并递归调用自身处理信息,而非直接塞入上下文窗口。这种"像程序员一样思考"的架构使模型能主动管理信息,在保持成本优势的同时,显著提升了在超长文本任务中的性能表现,为长文本处理提供了全新思路。

2026-01-10 17:21:24 851

原创 AI编程神器来了!Spring AI Alibaba Assistant Agent框架,让代码自动生成执行,小白也能秒变大神

Cloud Native Assistant Agent是基于Spring AI Alibaba的企业级智能助手框架,采用代码即行动范式,通过生成和执行代码编排工具完成任务。框架包含评估、学习、经验、触发器等多个模块,支持安全沙箱执行,具备多维评估、Prompt动态组装、经验学习等特性。可帮助企业快速构建智能客服、系统诊断、运维助手等智能体,通过接入知识库和工具,适配多种业务场景。

2026-01-10 17:20:47 565

原创 DeepSeek-V3.2 技术报告全解析(非常详细):一文读懂 DSA 稀疏注意力、可扩展 RL 与 Agent 任务合成。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

2026-01-09 21:51:03 661

原创 别再被KV Cache卡脖子了!RLMs架构详解:轻松实现千万级Token上下文扩展!

语言模型中存在一个众所周知但难以描述的现象,称为"上下文腐化"。Anthropic 将上下文腐化定义为"随着上下文窗口中 token 数量的增加,模型从该上下文中准确回忆信息的能力下降",但社区中的许多研究人员知道这个定义并没有_完全_切中要害。例如,查看像 RULER 这样流行的大海捞针基准测试,大多数前沿模型实际上表现非常好(一年前的模型就能达到 90% 以上)。

2026-01-09 21:50:24 437

原创 万字长文(慎入):2026年大模型架构革命,深度复盘递归语言模型与KV Cache的博弈。

MIT、Samsung 以及 Prime Intellect 等先锋团队,正从不同维度共同逼近同一个终局。

2026-01-09 21:49:27 628

原创 Prompt不仅是对话,更是指令!深度拆解Agent核心:如何用Prompt驱动大模型执行复杂任务?

ReAct 这个词,是Reasoning(推理)和Acting(行动)的缩写。如果说CoT(思维链)是让 AI 学会“三思而后行”,那么ReAct就是让 AI 学会一边思考,一边干活。这听起来很抽象?我们用一个生活中的例子来打比方。想象一下,你就是福尔摩斯。当你接到一个案子(用户问题)时,你不会坐在椅子上干想(纯 LLM 生成),你也不会像无头苍蝇一样到处乱撞(纯脚本执行)。你的工作流是这样的:1“死者手里攥着一张车票,我应该去查查这张车票的来源。2拿起电话,打给火车站(使用工具)。3。

2026-01-09 21:48:34 879

原创 万字长文(慎入):一文读懂直接偏好优化(DPO),揭开 RLHF 替代方案的神秘面纱。

然而强化学习是一个复杂且不稳定的训练过程,其过程表现为:首先我们要先拟合一个反映人类偏好的奖励模型,然后使用强化学习对大规模无监督LM进行微调,以最大化这个估计的奖励,同时又不偏离原始模型太远(RLHF原理),具体第二张下图所示,展示了RLHF的训练步骤 或者说是阶段吧。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。可以看这个数据示例。

2026-01-09 21:47:25 764

原创 训练Agent太贵?Meta交出新答卷!DreamGym让RL训练成本立省90%,开发者福音!

Agent训练不一定需要完美复现真实环境,而是需要足够多样、信息丰富且因果可信的交互数据。为此,它构建了一个“合成健身房”,通过三大组件协同工作:如图所示,DreamGym 以种子任务为起点,通过经验模型与Agent的交互生成轨迹,并结合课程任务生成器动态调整任务难度,形成一个闭环训练系统。

2026-01-09 21:46:42 589

原创 保姆级教程!AReaL v0.5.0 全解析:带你打造“执一驭万”的新一代强化学习框架。

AReaL 是一个面向算法设计,以开发效率和灵活性为核心的强化学习框架。它通过极简的 API 和可扩展的插件机制降低用户的学习曲线和使用心智负担,让开发者聚焦于算法本身而非系统细节,具备大规模扩展、无侵入 Agentic RL、故障感知与自恢复等能力。在蚂蚁内部,作为 ASystem 的关键用户层技术,我们使用 AReaL 支持了 Ring-1T 万亿参数 MoE 模型的 Reinforcement Learning 强化学习(下文简称 RL)后训练,相关代码已在以下链接开源。

2026-01-09 21:46:01 772

原创 震惊!AI三剑客横空出世,小白也能玩转单细胞数据分析!CellAgent框架让你秒变生物数据专家

CellAgent是基于大语言模型的多智能体框架,通过规划器、执行器和评估器三大角色协同工作,将复杂的单细胞RNA测序数据分析自动化。用户只需提供自然语言任务描述,系统即可自动完成数据预处理、批次效应校正等分析步骤。框架集成工具检索、记忆模块和代码沙箱,确保分析准确性和安全性,让生物数据分析变得简单高效。

2026-01-08 14:33:29 636

原创 【硬核干货】BEiT-v3多模态大模型全解析:一个模型架构通吃图像+文本,AI开发者的“大一统“神器!

BEiT-v3是代表"Big Convergence"趋势的多模态大模型,通过Multiway Transformer架构实现模型、任务和规模的大一统。它采用MoME架构,根据输入数据动态路由到不同专家网络(视觉、语言或视觉-语言专家),支持多种下游任务。使用统一的Mask Data Modeling预训练策略,将文本、图像和图文对都视为"语言"进行训练。模型参数量达1.9B,展示了统一框架的强大性能,为多模态AI开发提供了新思路。

2026-01-08 14:32:43 726

原创 大模型RAG“翻车“?原来是分块没做好!小白程序员必看的分块秘籍,让你的AI应用准确率飙升300%

文章详细介绍了大模型RAG系统中的分块技术,解释了分块是将大型文档分解为更小片段的关键步骤,直接影响检索准确性和生成质量。文章从基础到高级介绍了多种分块策略,包括固定大小、递归、基于文档、语义、基于LLM、代理式、后期、分层和自适应分块,并指导如何根据文档性质和系统需求选择最佳策略。最后提供了LangChain、LlamaIndex等工具和在生产环境中优化分块的方法。

2026-01-08 14:31:19 748

原创 RLVR强化学习训练成本暴降98%!12种PEFT方法大PK,结果让人意外...

第一次系统评测了PEFT方法在强化学习中的表现。停用标准LoRA,改用结构变体:DoRA、MiSS、AdaLoRA在RLVR场景下明显更强,DoRA甚至能超越全参数微调。如果你还在用标准LoRA训练强化学习模型,那真的该升级工具箱了。远离SVD初始化的坑:PiSSA和MiLoRA在强化学习中会翻车,原因是它们和RLVR的"非主成分更新"特性存在根本性冲突。如果想优化初始化,学LoRA+调学习率就好,别折腾SVD分解。保持适度的参数量:极端压缩(VeRA、IA³、Rank-1)会让模型"饿"到学不动。

2026-01-08 14:30:31 845

原创 20260108_142519_AGI(十二):RAG技术基础及企业级RAG系统打造

本文详解大模型应用开发三大模式:提示工程、RAG检索增强生成和微调,重点解析RAG技术的原理、流程及优势,并通过DeepSeek+Faiss案例展示本地知识库检索系统搭建。同时介绍Query改写技术提升检索质量,以及结合互联网搜索扩展RAG系统功能,为开发者提供完整的大模型应用开发指南。

2026-01-08 14:29:31 532

原创 程序员必学!Flamingo多模态大模型架构揭秘:冻结主干+门控注入,AI“降维打击“!

Flamingo模型通过"冻结强大主干+门控插入轻量适配层+海量图文交错数据训练"的创新架构,实现了无需微调的少样本/零样本学习能力。模型采用预训练冻结的视觉编码器和语言模型,结合Perceiver Resampler压缩视觉特征,以及GATED XATTN-DENSE层实现跨模态信息融合,能够处理任意交错的文、图、视频序列,解决了现有模型在少样本学习、输出灵活性和多模态处理方面的瓶颈问题。

2026-01-08 14:28:19 837

原创 程序员福音!轻量级文本公式识别模型UniRec-0.1B:性能SOTA+9倍速,代码已开源!

UniRec-0.1B是一款仅0.1B参数的轻量级统一文本与公式识别模型。研究团队构建了包含4000万样本的UniRec40M数据集,创新采用分层监督训练和语义解耦分词器技术。实验表明,该模型在准确率上媲美大型视觉语言模型,同时实现2-9倍的推理速度提升,代码已开源,适合实际业务场景部署。

2026-01-08 14:27:08 317

原创 震惊!8B小模型秒杀32B大模型?LIR3AG框架让RAG推理成本狂降98%,性能直接起飞!

LIR3AG是一种轻量级重排推理框架,包含检索器、重排器和推理构造器三大模块。它将推理模型能力"蒸馏"到非推理模型中,实验显示8B参数的LIR3AG性能超越32B推理模型,F1指标提升6.2%-22.5%,同时减少98%的token消耗和58.6%的推理时间,实现了性能与成本的双赢,成为RAG系统的新标杆。

2026-01-08 14:26:35 982

原创 【震惊】解锁CLIP多模态潜力!GET方法让AI自动发现新类别,小白也能轻松上手!附完整开源代码!

本文提出GET方法,利用CLIP多模态能力解决广义类别发现问题。通过文本嵌入合成器(TES)为未标记数据生成伪文本嵌入,结合双分支框架和跨模态实例一致性,实现视觉与文本信息的相互增强。该方法在GCD基准测试上达到最先进水平,为无标签数据中的已知类别分类和新类别发现提供了有效解决方案。

2026-01-08 14:25:47 816

原创 AI Agent真香警告:5大框架全解析,小白也能轻松驾驭大模型!

本文深入解析了AI Agent的核心概念,强调其"自主思考、执行与复盘"的本质特性,并对比了AutoGPT、LangGraph、Dify、CrewAI和AutoGen五大主流框架的特点与适用场景。文章详细阐述了技术选型依据,包括任务确定性和团队技术栈等因素,为开发者提供清晰的决策路径,助力开发者选择适合的AI Agent框架,高效开发智能应用。

2026-01-08 14:24:44 613

原创 从“提示词奴隶“到“AI架构师“:Anthropic上下文工程大揭秘,小白也能驯服大模型!

文章介绍大模型应用的"上下文工程"概念,解释上下文并非越多越好,提出混合策略应对context腐化问题,并详细介绍三种上下文管理方法:压缩、结构化笔记和多Agent架构。文章强调,随着模型能力提升,上下文工程将从技巧性工作演变为架构性工作。

2026-01-07 15:36:35 647

原创 AG 的“石器时代”结束了!读 PDF 别再瞎折腾工具链,RAG-Anything + Milvus 一招制胜!

AI落地主流场景之一是知识库,而做知识库,必定少不了PDF文件。传统RAG要想精准读取这些图文并茂的PDF,就需要集成PyPDF2、OpenCV、Camelot、Tesseract等多个工具,系统庞杂且低效。此外,不同 PDF 各有侧重:报告重图表、财报重表格、论文重公式,如何精准调用这些工具同样难度不低。香港大学数据科学学院刚刚开源的RAG-Anything项目,结合开源的Milvus向量数据库,让我们逐渐看到了解决这个问题的曙光。

2026-01-07 15:35:31 819

原创 向量数据库竟让AI制药研发速度提升22倍?小白程序员也能上手的生物AI实战指南

百图生科通过结合2100亿参数的生命科学大模型xTrimo V3和Milvus向量数据库,解决了生物医学AI落地的五大难题:蛋白质搜索效率低、多模态数据断联、速度与精度难平衡、通用工具适配性低、单一架构难满足多场景需求。Milvus开源特性和定制化能力使蛋白质序列搜索从15分钟/次缩短至50秒/次,支持50亿条数据检索,实现跨模态数据关联,构建了模型优化-搜索精准-研发提速的良性循环,为生物AI提供了重要参考。

2026-01-07 15:34:34 346

原创 让 AI 团队拥有“共同记忆”!OpenAgents 携手 Milvus,揭秘多智能体协作的幕后黑科技!

静态编排 VS 动态编排,谁是多agent系统最优解?今年以来,围绕到底是单一agent好,还是多agent协作更优这个话题,行业已经反反复复吵了好几轮。通常来说,面对简单问题,采用react模式的单一agent就能搞定。可遇到复杂问题,单一agent就会立刻出现包括但不限于以下问题:串行执行效率低:无法同时完成并行的子步骤(如 “同时爬取 A、B 两个网站的数据”)。长任务推理链易断裂:任务步骤超过窗口容量时,早期推理结果被遗忘,导致逻辑断层。工具调用能力有限:单一 Agent 可调用工具太多,反而导致输

2026-01-07 15:33:59 238

原创 别再死磕 LangChain 了!LangGraph 才是未来?1.0 版本深度解析,搞不懂区别小心被淘汰!

除了官方提供的预构建中间件,开发者可以通过装饰器或类继承的方式创建自定义中间件。

2026-01-07 15:32:49 663

原创 震惊!这个框架让大模型从“脑死亡“到“听话如狗“,程序员狂喜!

文章介绍了Parlant开源框架,它通过动态规则注入、自我批判机制和条件化工具调用,解决了传统AI框架在处理大量规则时的崩溃问题。结合Milvus向量数据库,Parlant能从数百条规则中智能匹配相关规则,实现高效精准的AI Agent,适用于金融、医疗等高可靠性场景。文章提供了详细的demo代码,帮助开发者快速上手构建可控可解释的生产级AI Agent。

2026-01-07 15:30:46 330

原创 20260107_152049_沃尔沃RAG实战:企业级知识库,早就该放弃小分块策略

沃尔沃汽车是全球知名汽车制造商,所有的战略决策都依赖于高效的数据洞察。在此背景下,沃尔沃战略部门需要构建基于向量检索的 多模态AI 文档检索系统,支撑300-400MB 文档(约 70 万 - 100 万向量嵌入)稳定处理,适配部门级日均 10-20 次查询场景。其对文档检索系统的要求如下:体验侧,需足够精准、能够处理各种多模态数据、支持元数据动态管理、检索透明化监控能力,且支持自托管与托管服务迁移。成本侧,需要初始投入可控(低于云厂商)、运营成本与使用量挂钩、规模化扩展时成本增长可预测。

2026-01-07 15:29:58 251

原创 别再盲目调参数了!RAG 的核心在分词,Milvus Analyzer 深度解析,干货太硬核了!

一句话来说,Milvus Analyzer 是 Milvus 提供的文本预处理与分词工具,用来将原始文本拆解为 token,并对其进行标准化和清洗,从而更好地支持全文检索和 text match。下面这张架构图展示了 Milvus Analyzer 的整体结构:从图中可以看出,Milvus Analyzer 的整体处理流程可以总结为:原始文本 → Tokenizer → Filter → Tokens。Analyzer 的核心组件有两个,**Tokenizer(分词器)与Filter(过滤器)。

2026-01-07 15:29:11 893

原创 显存爆炸?成本过高?RaBitQ 1bit 压缩神技,高召回不降级,这才是 AI Infra 的省钱王炸!

RaBitQ 源于论文《RaBitQ: Quantizing High-Dimensional Vectors with a Theoretical Error Bound for Approximate Nearest Neighbor Search》https://arxiv.org/abs/2405.12497。它专为高维向量设计,通过将 FP32(32 位浮点数)向量压缩为二进制表示(每个维度仅 1 bit),实现极端存储优化,同时借助理论误差界限保证搜索准确性。

2026-01-07 15:25:59 203

原创 大模型落地太难?那是你不懂上下文工程!这篇续命指南,帮你避开 90% 的坑!

对人类来说,诗人写诗要懂语言韵律,科学家提假设需基于现有理论。对AI来说,

2026-01-07 15:25:02 776

原创 震惊!30B参数碾压GPT-5?MiroThinker 1.5开源大模型杀疯了!小白程序员必学的“交互式智能“新范式,降本增效还能跑赢235B!内卷时代的新出路!

MiroMind团队推出开源小钢炮MiroThinker 1.5,仅30B参数却在多项基准测试中超越GPT-5等顶尖模型,推理成本仅为同类1/20。其核心突破在于引入"Interactive Scaling"交互式扩展机制,通过外部世界交互而非死记硬背提升推理能力,并采用证据求证、多轮校验、自我修正等科学方法,实现了小参数高智能的范式转变,为开发者提供全新AI解决方案。

2026-01-06 16:38:44 847

原创 震惊!2025年AI编程开发大变局:Claude逆袭ChatGPT,太空数据中心成真,小白程序员如何抓住“模型套利“风口?

2025年AI领域迎来四大变局:Anthropic超越OpenAI成首选大模型,Gemini迅速崛起;模型个性(如ChatGPT如"黑猫",Claude如"金毛")影响用户选择;创业者可构建垂直AI应用,实现多模型"套利"与编排;能源焦虑催生太空数据中心构想;AI泡沫带来算力过剩,成为应用层创业红利。AI应用公司面临客户期望提高和人才短缺挑战,高人效比企业如Gamma验证了AI赋能潜力。

2026-01-06 16:38:07 871

原创 【震惊】多模态大模型集体“翻车“!空间智能评测基准揭示AI致命短板,开发者必看

上海人工智能实验室推出MMSI-Video-Bench空间智能评测基准,对25个主流多模态大模型测试显示最优模型Gemini 3 Pro准确率仅38%,与人类水平差距达60%。研究揭示模型在空间构建、运动理解、规划等方面存在明显瓶颈,几何推理错误最为普遍。即使引入3D空间线索和思维链提示,模型性能提升有限,表明当前大模型底层空间理解能力仍存在根本性不足。

2026-01-06 16:37:25 901

原创 AI圈炸锅!DeepSeek-OCR黑科技:压缩10倍长文本,成本直降90%!VTC技术让大模型“过目不忘“,中科院发布权威评测

DeepSeek-OCR推出视觉文本压缩(VTC)技术,实现10倍文本压缩率,大幅降低大模型处理长文本成本。中科院自动化所等机构推出VTCBench基准测试,评估模型在视觉空间中的信息检索、关联推理和长期记忆三大能力。测试显示模型存在"空间注意力偏见",但对中间部分理解能力随文档变长而衰退。Gemini-3-Pro表现优异,证明VTC是处理大规模长文本的可行路径,为长文本处理开辟新路径。

2026-01-06 16:36:41 618

原创 【爆肝整理】2025大模型编程开发神器大盘点!AI工具让小白秒变大神,效率提升300%!

2025年度「AI 100」榜单正式启动招募,评选中国最具实力的AI产品。榜单分为三大板块:代表最强综合实力的「旗舰AI 100」、最具未来潜力的「创新AI 100」和十大热门赛道TOP3产品。评估体系结合定量用户数据与定性专家评估,涵盖技术实力、市场表现、创新潜力等多维度指标,为AI产业提供全景式洞察和未来趋势预测。

2026-01-06 16:35:54 1475

原创 【AI圈地震】OpenAI编程大牛离职,GPT-5技术或将崩盘?大模型开发者速看!

OpenAI编程技术奠基人Jerry Tworek离职,引发对OpenAI技术路线的担忧。作为"推理模型之父"和"编程代码之父",Tworek是GPT-4核心贡献者,其离职标志着OpenAI核心人才持续流失的趋势。多位OpenAI元老因理念不合、商业化压力等原因离开,从理想主义研究机构转向商业化的转变被认为是主因。人才流失是危险信号,理想主义的OpenAI已不复存在。

2026-01-06 16:35:10 720

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除