一、概念及原理
插入排序(英语:Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
二、插入排序过程
如下图所示,插入排序的实现思路顾名思义,就是不断地在一个已经是有序的数组中,寻找合适位置并插入新元素。
三、具体实现步骤为:
首先我们把整个数组拆分为有序区间和未排序区间,有序区间在插入排序一开始只有一个元素,就是数组的第一个元素。
接在有序区间之后的一个元素就是准备插入的元素,在图中就是标为绿色的元素,在有序区间内寻找位置并插入。
其寻找逻辑为:从后往前依次进行比较,如果待插入元素大于当前元素,则将待插入元素插入到当前元素的后一位,如果待插入元素小于当前元素,则将当前元素后移一位。不断重复该过程直至到数组的最后一位
四、具体实现的python代码为:
def insertion_sort(num_list):
length = len(num_list)
if length <= 1:
return num_list
for i in range(1, length):
j = i-1 # 表示已排好序的最大索引
value = num_list[i] # 未排序列表的第一个元素
while j >= 0:
# 如果已排序的最后一个元素 < 当前未排序的元素值
if num_list[j] < value:
# 把当前未排序的元素值插入到已排序元素的最后面 退出循环
num_list[j+1] = value
break
else:
# 把已排序好元素倒叙向后移动 直到符合插入条件
num_list[j+1] = num_list[j]
# 如果当前被插入的元素一直未找到比它小的元素 则把当前元素放到首位
if j == 0:
num_list[j] = value
# 倒叙向后移动
j -= 1
return a
if __name__ == '__main__':
a = [1, 3, 4, 2, 6, 9, 12, 3, 22]
insertion_sort(a)
print(a)
五、时间复杂度和空间复杂度
- 最好情况的时间复杂度为O(n) 示例: [1, 2, 3, 4, 5]
- 最坏情况的时间复杂度为O(n2) 示例: [5, 4, 3, 2, 1]
- 平均情况的时间复杂度为O(n2),具体分析过程可以参考上篇的冒泡排序
空间复杂度为O(1)
是否为原地排序: 是
是否稳定: 是