【AI大模型】如何让大模型变得更聪明?基于时代背景的思考

前言

在以前,AI和大模型实际上界限较为清晰。但是随着人工智能技术的不断发展,基于大规模预训练模型的应用在基于AI人工智能的技术支持和帮助上,多个领域展现出了前所未有的能力。无论是自然语言处理、计算机视觉,还是语音识别,甚至是自动驾驶,AI模型的性能都取得了显著进步。然而,尽管大模型已经表现出令人惊叹的能力,它们在理解力、泛化能力和适应性等方面仍然面临挑战。有时候依旧还是会出现指鹿为马、画蛇添足、罢工不干的失误性行为。**那么在这个AI大时代,怎么才能让大模型变得更聪明呢?**本文将会给各位进行具体的介绍。

一、大模型的现状与挑战

首先,我们需要知道大模型“不够聪明”的原因。

1.1 理解力的局限

大模型在特定任务上表现优异,但它们对于复杂问题和原理性问题的解答仍然有着理解力和想象力的局限。对于复杂的多轮对话,模型往往难以保持上下文一致性,容易出现语义理解偏差;而对于较为深层次的原理性问题,它可能会出现胡言乱语,也就是说大模型生成的内容在表面上看起来是合理的、有逻辑的,甚至可能与真实信息交织在一起, 但实际上却存在错误的内容、引用来源或陈述。这就是所谓“大模型幻觉”

比如ChatGPT3.5大模型,当我问它“1+1为什么=2”时,它首先会这么说:

而当我继续追问它时:

我们仔细分析一下:从哲学角度来看,

一加一等于二这个问题当然体现了逻辑的必然性和普遍性。但是我们发现,一加二等于三也体现了逻辑的必然性和普遍性。这说明——GPT似乎在规避这个问题的本质,它并没有认识到一加一等于二这个问题的特殊性和单一性,它将其归类为普遍性问题去看待,而不是从最原始的角度求分析。并且针对它后续所说:”哲学家可以…“、”在哲学中,1+1等于2不仅仅…“,仔细看这些话术,它实际上并不是在回答我的问题,而是在告诉我别 人是如何回答这个问题的。这里已经脱离了问题的本质。

实际上,自然语言处理大模型只是为了表现得像人,但它并不能跟人一样。

1.2 泛化能力的不足

大模型在训练数据上的表现通常非常出色,但在面对未见过的数据时,其泛化能力仍有待提高。特别是当数据分布发生变化时,模型的性能可能会显著下降。

1.3 适应性的挑战

随着环境和需求的变化,AI模型需要不断适应新的任务和场景。然而,大模型的训练和微调过程通常耗时耗力,这使得模型的适应性成为一大挑战。大型公司在训练他们自己的大模型时,往往动用大量的人力和物力来进行训练,这基于他们庞大的公司运转机制;但是对于小型公司和个人来说,大模型的训练往往是极其吃力的一件事。而当训练效果不佳时,大模型就会变得迟钝和不够聪明——毕竟,时代瞬息万变,大模型也是以时代为背景的。

二、怎么让大模型变聪明呢?

在介绍了现如今大模型陷入的挑战之后,我们该如何让大模型变得聪明呢?以下是具体方案和python的代码实现。

2.1 增强数据多样性和质量
2.1.1 数据增强技术

数据增强是一种通过对训练数据进行各种变换来生成新的数据样本的方法,可以有效提高模型的泛化能力。例如,在图像处理中,可以通过旋转、平移、缩放等操作来增强数据。在自然语言处理中,可以使用同义词替换、随机插入、删除等方法来扩展语料库。

下面示例展示了如何使用同义词替换进行数据增强,从而提高自然语言处理模型的泛化能力。

代码语言:javascript

import random
from nltk.corpus import wordnet

def synonym_replacement(sentence, n):
    """
    使用同义词替换句子中的单词来进行数据增强。

    参数:
    sentence (str): 输入的句子。
    n (int): 要替换的单词数量。

    返回:
    str: 经过同义词替换后的句子。
    """
    words = sentence.split()  # 将句子拆分成单词列表
    new_words = words.copy()  # 复制一份新词列表
    # 选择句子中有同义词的单词,并随机打乱顺序
    random_word_list = list(set([word for word in words if wordnet.synsets(word)]))
    random.shuffle(random_word_list)
    num_replaced = 0  # 初始化替换计数

    for random_word in random_word_list:
        synonyms = wordnet.synsets(random_word)  # 获取该单词的所有同义词
        if len(synonyms) > 0:
            synonym = random.choice(synonyms).lemmas()[0].name()  # 随机选择一个同义词
            # 用选择的同义词替换句子中的该单词
            new_words = [synonym if word == random_word else word for word in new_words]
            num_replaced += 1  # 更新替换计数
        if num_replaced >= n:  # 如果达到替换数量,停止替换
            break
            
    return ' '.join(new_words)  # 返回替换后的句子

sentence = "The quick brown fox jumps over the lazy dog"
augmented_sentence = synonym_replacement(sentence, 2)  # 进行同义词替换
print(augmented_sentence)  # 输出替换后的句子
2.1.2 高质量数据集的构建

除了数据增强**,构建高质量的数据集**同样至关重要。高质量的数据不仅包含丰富的信息,还需要准确标注。为了构建这样的数据集,可以采用专家标注、众包标注和自动标注相结合的方法。

2.2 模型结构优化
2.2.1 多任务学习

多任务学习(Multi-Task Learning, MTL)通过同时学习多个相关任务的知识,可以提高模型的泛化能力和理解力。例如,在自然语言处理领域,可以同时训练语言模型、问答系统和文本分类器,从而共享知识,提高整体性能。

这个示例展示了如何使用预训练的BERT模型进行多任务学习,包括掩码语言模型任务和下一句预测任务。

代码语言:javascript

from transformers import BertTokenizer, BertModel
import torch

# 加载BERT的分词器和模型
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')

# 对输入句子进行编码
input_ids = tokenizer("The quick brown fox jumps over the lazy dog", return_tensors="pt")["input_ids"]
# 创建掩码标签
labels = tokenizer("The quick brown fox [MASK] over the lazy dog", return_tensors="pt")["input_ids"]

# 前向传播,计算损失和logits
outputs = model(input_ids, labels=labels)
loss = outputs.loss
logits = outputs.logits

print(f"Loss: {loss.item()}")  # 输出损失值
2.2.2 模型架构创新

近年来,Transformer架构取得了巨大成功,但仍有优化空间。例如,增强注意力机制、设计更深层次的网络、引入图神经网络(Graph Neural Networks, GNN)等,都可以进一步提升模型性能。

这个示例展示了如何使用图卷积网络(GCN)来进行图结构数据的分类任务

代码语言:javascript

import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
from torch_geometric.data import Data

# 定义图卷积网络模型
class GCN(torch.nn.Module):
    def __init__(self, num_node_features, num_classes):
        super(GCN, self).__init__()
        self.conv1 = GCNConv(num_node_features, 16)  # 第一层图卷积
        self.conv2 = GCNConv(16, num_classes)  # 第二层图卷积

    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        x = self.conv1(x, edge_index)  # 进行第一次卷积
        x = F.relu(x)  # 应用ReLU激活函数
        x = self.conv2(x, edge_index)  # 进行第二次卷积
        return F.log_softmax(x, dim=1)  # 输出分类结果

# 生成示例数据
num_nodes = 100
num_node_features = 3
num_classes = 2
x = torch.randn((num_nodes, num_node_features))  # 随机生成节点特征
edge_index = torch.randint(0, num_nodes, (2, num_nodes*2))  # 随机生成边索引
y = torch.randint(0, num_classes, (num_nodes,))  # 随机生成节点标签

data = Data(x=x, edge_index=edge_index, y=y)  # 构建图数据对象
model = GCN(num_node_features, num_classes)  # 初始化GCN模型
output = model(data)  # 前向传播,获得输出
print(output)  # 打印输出结果
2.3 强化学习与自适应学习
2.3.1 强化学习(Reinforcement Learning, RL)

强化学习通过奖励机制引导模型逐步改进,可以有效提升模型的适应性。将强化学习应用于自然语言处理、机器人控制等领域,能够显著提升模型在复杂环境中的表现。

这个示例展示了如何使用OpenAI Gym环境进行强化学习训练。以经典的 CartPole 环境为例。

代码语言:javascript

import gym

# 创建CartPole环境
env = gym.make('CartPole-v1')
observation = env.reset()

for _ in range(1000):
    env.render()  # 渲染环境
    action = env.action_space.sample()  # 随机选择一个动作
    observation, reward, done, info = env.step(action)  # 执行动作
    if done:
        observation = env.reset()  # 重置环境

env.close()
2.3.2 自适应学习(Adaptive Learning)

自适应学习通过实时调整模型参数,使其更好地适应新环境和任务。(同时自适应学习(Adaptive Learning)也是指一种利用实时数据和反馈来动态调整教学内容和学习路径的教育技术方法,以满足每个学习者的个性化需求。)通过分析大模型的学习行为、针对方向和应用点,自动调整训练策略,从而达到自适应学习的结果,AI可以自己朝着具体的方向进行深入学习,从而形成更大的数据库。

2.4 融合外部知识和常识推理
2.4.1 知识图谱(Knowledge Graphs)

知识图谱通过结构化的知识表示,可以为大模型提供丰富的背景信息,增强其理解力和推理能力。在自然语言处理任务中,结合知识图谱可以显著提高模型的表现。

代码语言:javascript

from py2neo import Graph

# 连接到Neo4j数据库
# "bolt://localhost:7687" 是Neo4j数据库的Bolt协议URL
# auth=("neo4j", "password") 是Neo4j数据库的认证信息,用户名是 "neo4j",密码是 "password"
graph = Graph("bolt://localhost:7687", auth=("neo4j", "password"))

# 定义一个Cypher查询
# 这个查询匹配具有Person标签的节点之间的KNOWS关系
# 并返回这些Person节点的名称
query = """
MATCH (n:Person)-[r:KNOWS]->(m:Person)
RETURN n.name AS name1, m.name AS name2
"""

# 执行查询并获得结果
results = graph.run(query)

# 遍历查询结果,逐行打印每对名字
# record["name1"] 和 record["name2"] 分别表示KNOWS关系的两端节点的名称
for record in results:
    print(record["name1"], "knows", record["name2"])
2.5 模型压缩与高效推理
2.5.1 模型蒸馏(Model Distillation)

模型蒸馏通过将大模型的知识迁移到小模型中,能够在保持性能的同时,显著减少计算资源的消耗。

2.5.2 量化(Quantization)

量化技术通过降低模型参数的精度,可以显著减少存储和计算成本,同时对模型性能影响较小。

代码语言:javascript

import torch
from torch.quantization import quantize_dynamic

model = torch.nn.Linear(5, 10)
quantized_model = quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
三、展望未来的大模型学习

看待如今的大模型,我们彷佛是在看着自己的孩子,从初出茅庐,牙牙学语,到学会思考,学会说话,这个过程有趣并且具有意义。

“在大模型技术高速发展的时代,一个重要的趋势是:我们每一个人,除非你有独特的见解、独特的认知、独特的问题解决能力,否则你能做的,大模型都可以做到。”在实际的大模型当中,想要使其做得更加“像人”,就必须不能停止它的学习。基于不断变化的时代背景下,大模型要学习的东西是源源不断的,永不停息的。所以,当我们看待如何让大模型变得更聪明这个课题的同时,也要认识到时代的延展性,而人的行为也是如此,只有不断学习,跟进时代,才能不被淘汰,增进知识——从另一个角度来看,这不也正是大模型为了“像人”而努力的一个点吗?

如何系统的去学习AI大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

  • 21
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值