在人工智能技术迅猛发展的今天,生成式AI已渗透至内容创作、数据分析、商业决策等各个领域。然而,让AI真正理解人类意图,并稳定输出高质量结果成了一大难题。这本在生成式人工智能领域具有里程碑意义的书正解决了这个问题!
它不仅系统性地拆解了AI指令设计的底层逻辑,更以“未来验证”为核心理念,为读者提供了一套跨越技术迭代的通用方法论。
本书会系统讲解生成式人工智能的核心概念,并提供丰富的实践指导,帮助你掌握 LLM 和扩散模型的应用技巧。
大多数开发者在将这些模型应用于自动化系统时,都面临着结果不稳定、可靠性不足的难题。阅读本书,将有效解决这些问题,并获得可信赖的生成式AI解决方案,让你有效地使用人工智能!
如果你需要这本书的PDF,可以添加,会及时分享给你!
大佬们对这本书的评价也毋庸置疑了这本书的含金量!
在这本书中,你将看到数百个示例,展示如何使用提示技术,包括文本和图像提示,以及如何使用Python构建AI自动化脚本和产品。
这个指南不是简单地列出一些“魔术词”来找到正确的组合,而是教你如何构建系统,为AI应用提供合适的上下文,并说明如何测试和扩展AI系统以用于生产环境。
通过这本书,你将了解到:
-
程序的 AI 模型的交互链结构以及其中的细粒度步骤
-
AI 模型请求如何从应用问题转化为模型训练领域的文档补全问题而产生
-
LLM 和传播模型架构的影响——以及如何与其进行最佳互动
-
这些原则如何在自然语言处理、文本和图像生成以及代码领域实际应用