站在人工智能革命前沿的大型语言模型 (LLM) 正经历快速发展。本 LLM 指南专注于实践,深入探讨如何利用 MLOps 最佳实践,在真实场景中设计、训练和部署 LLM。你将学习构建一个由 LLM 驱动的孪生模型,它不仅经济高效、可扩展且模块化,更能超越 Jupyter 笔记本的实验阶段,构建真正可用于生产的端到端 LLM 系统。
这本书简直是 LLM 项目的葵花宝典!它会教你数据工程、监督式微调和模型部署,还会带你一步步做出一个 LLM Twin 应用。跟着书里的例子,你就能把 MLOps 的各种技巧用到自己的项目里。而且,它还会告诉你 LLM 领域现在最火的技术,比如怎么让模型跑得更快、更符合你的需求,以及怎么处理实时数据。如果你想在实际项目中运用 LLM,这本书绝对不容错过!
如果你需要这本书的pdf,可以添加我助手的微信让她及时分享给你!
无论你是刚入门的人工智能爱好者,还是经验丰富的从业者,本书都将为你提供LLM部署的全面指导。你将学会如何高效地解决实际问题,并构建低延迟、高可用的推理服务。通过本书,你将深入理解LLM的原理,并掌握将其应用于实际场景的关键技能。
这本书的主要特点有:
- 逐步构建和完善 LLM,涵盖数据准备、RAG 和微调
- 学习部署和监控 LLM 的基本技能,确保生产中的最佳性能
- 利用偏好调整、评估和推理优化来增强 LLM 应用程序的性能和适应性
在本书中你将学到什么:
- 实施强大的数据管道并管理 LLM 培训周期
- 创建自己的法学硕士 (LLM) 课程,并通过实际案例进行完善
- 开始使用 LLMOps,深入了解核心 MLOps 原则,例如编排器和即时监控
- 执行监督微调和 LLM 评估
- 使用 AWS 和其他工具部署端到端 LLM 解决方案
- 设计可扩展和模块化的LLM系统
- 通过构建特征和推理管道了解 RAG 应用程序