文章目录
前情提要(必看)
还在为PyTorch版本兼容问题抓狂?(我懂你)明明跟着教程走,却总是遇到ImportError
或者CUDA不可用
的报错?别担心!这篇保姆级教程将用最直白的语言,带你避开所有安装坑点(亲测有效)!
一、装备检查(关键第一步)
1.1 Python版本自查
按住Win+R
输入cmd
打开命令行,输入:
python --version
(重要)PyTorch目前支持的Python版本范围是3.8-3.11。如果你的版本是3.7或更早,建议先升级Python!
1.2 CUDA生存指南
查看显卡是否支持CUDA
右键桌面→NVIDIA控制面板→帮助→系统信息→组件选项卡
看到NVCUDA.DLL
后面对应的版本号了吗?这就是你显卡支持的最高CUDA版本(比如12.1.105)
两种查看CUDA版本的方法(容易搞混)
nvidia-smi # 显示驱动支持的最高CUDA版本
nvcc --version # 显示实际安装的CUDA工具包版本
如果两个命令显示的版本不一致(常见现象),以nvcc --version
为准!
二、官方版本对照表(2023最新版)
PyTorch版本 | 推荐Python版本 | 可用CUDA版本 | torchvision版本 |
---|---|---|---|
2.0.1 | 3.8-3.11 | 11.7/11.8 | 0.15.2 |
1.13.1 | 3.7-3.10 | 11.6/11.7 | 0.14.1 |
1.12.1 | 3.7-3.10 | 10.2/11.6 | 0.13.1 |
(避坑提醒)不要盲目追新!最新版PyTorch可能和部分第三方库存在兼容性问题,建议新手选择LTS长期支持版本(当前是1.13.1)
三、三种安装姿势(任选其一)
3.1 官网命令生成器(推荐新手)
访问pytorch.org → 选择你的配置 → 复制命令
比如选择Stable(1.13.1)、Windows、Conda、CUDA 11.6,会得到:
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia
3.2 pip精准安装(适合老司机)
# CUDA 11.6版本
pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
# CPU版本(无显卡可用)
pip install torch==1.13.1+cpu torchvision==0.14.1+cpu
3.3 离线安装大法(网络不好时用)
- 访问https://download.pytorch.org/whl/torch_stable.html
- 按
ctrl+F
搜索对应版本(如cu116/torch-1.13.1%2Bcu116) - 下载
.whl
文件后本地安装:
pip install D:\Downloads\torch-1.13.1+cu116-cp38-cp38-win_amd64.whl
四、验收测试(必须做)
新建test.py
输入以下代码:
import torch
print(f"PyTorch版本:{torch.__version__}")
print(f"CUDA可用:{torch.cuda.is_available()}")
print(f"当前显卡:{torch.cuda.get_device_name(0)}" if torch.cuda.is_available() else "CPU模式")
运行后看到类似这样的输出就成功啦!
PyTorch版本:1.13.1+cu116
CUDA可用:True
当前显卡:NVIDIA GeForce RTX 3090
五、常见翻车现场急救包
5.1 报错:No module named 'torch'
原因:安装时没激活虚拟环境!
解决方案:
conda create -n pytorch_env python=3.9 # 创建环境
conda activate pytorch_env # 激活环境
重新执行安装命令
5.2 报错:CUDA driver version is insufficient
原因:显卡驱动太旧!
解决方法:去NVIDIA官网下载最新驱动,安装时勾选"清洁安装"
5.3 安装后import torch报错
尝试这个万能修复命令:
pip install --upgrade --force-reinstall torch torchvision torchaudio
六、版本管理黑科技
强烈建议使用conda创建独立环境(每个项目一个环境):
conda create -n myproject python=3.9 # 创建环境
conda activate myproject # 进入环境
conda list # 查看当前环境安装的包
conda install pytorch=1.13.1 -c pytorch # 指定版本安装
结语(老司机忠告)
安装PyTorch就像谈恋爱——强扭的瓜不甜!一定要根据自己电脑的实际情况选择版本组合。如果遇到问题,记住三件套:
- 检查版本对应关系
- 使用虚拟环境隔离
- 善用
conda clean --all
和pip cache purge
清理缓存
(终极秘籍)实在搞不定的时候,试试Docker大法!官方镜像已经配置好所有依赖:
docker pull pytorch/pytorch:1.13.1-cuda11.6-cudnn8-runtime
现在你已经掌握了PyTorch安装的终极奥义,快去征服深度学习的世界吧!如果还有疑问,欢迎在评论区call我~