[Python]手把手教你搞定PyTorch环境搭建(2023新版)

前情提要(必看)

还在为PyTorch版本兼容问题抓狂?(我懂你)明明跟着教程走,却总是遇到ImportError或者CUDA不可用的报错?别担心!这篇保姆级教程将用最直白的语言,带你避开所有安装坑点(亲测有效)!

一、装备检查(关键第一步)

1.1 Python版本自查

按住Win+R输入cmd打开命令行,输入:

python --version

(重要)PyTorch目前支持的Python版本范围是3.8-3.11。如果你的版本是3.7或更早,建议先升级Python!

1.2 CUDA生存指南

查看显卡是否支持CUDA

右键桌面→NVIDIA控制面板→帮助→系统信息→组件选项卡
看到NVCUDA.DLL后面对应的版本号了吗?这就是你显卡支持的最高CUDA版本(比如12.1.105)

两种查看CUDA版本的方法(容易搞混)
nvidia-smi  # 显示驱动支持的最高CUDA版本
nvcc --version  # 显示实际安装的CUDA工具包版本

如果两个命令显示的版本不一致(常见现象),以nvcc --version为准!

二、官方版本对照表(2023最新版)

PyTorch版本推荐Python版本可用CUDA版本torchvision版本
2.0.13.8-3.1111.7/11.80.15.2
1.13.13.7-3.1011.6/11.70.14.1
1.12.13.7-3.1010.2/11.60.13.1

(避坑提醒)不要盲目追新!最新版PyTorch可能和部分第三方库存在兼容性问题,建议新手选择LTS长期支持版本(当前是1.13.1)

三、三种安装姿势(任选其一)

3.1 官网命令生成器(推荐新手)

访问pytorch.org → 选择你的配置 → 复制命令
比如选择Stable(1.13.1)、Windows、Conda、CUDA 11.6,会得到:

conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia

3.2 pip精准安装(适合老司机)

# CUDA 11.6版本
pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116

# CPU版本(无显卡可用)
pip install torch==1.13.1+cpu torchvision==0.14.1+cpu

3.3 离线安装大法(网络不好时用)

  1. 访问https://download.pytorch.org/whl/torch_stable.html
  2. ctrl+F搜索对应版本(如cu116/torch-1.13.1%2Bcu116)
  3. 下载.whl文件后本地安装:
pip install D:\Downloads\torch-1.13.1+cu116-cp38-cp38-win_amd64.whl

四、验收测试(必须做)

新建test.py输入以下代码:

import torch
print(f"PyTorch版本:{torch.__version__}")
print(f"CUDA可用:{torch.cuda.is_available()}")
print(f"当前显卡:{torch.cuda.get_device_name(0)}" if torch.cuda.is_available() else "CPU模式")

运行后看到类似这样的输出就成功啦!

PyTorch版本:1.13.1+cu116
CUDA可用:True
当前显卡:NVIDIA GeForce RTX 3090

五、常见翻车现场急救包

5.1 报错:No module named 'torch'

原因:安装时没激活虚拟环境!
解决方案:

conda create -n pytorch_env python=3.9  # 创建环境
conda activate pytorch_env  # 激活环境
重新执行安装命令

5.2 报错:CUDA driver version is insufficient

原因:显卡驱动太旧!
解决方法:去NVIDIA官网下载最新驱动,安装时勾选"清洁安装"

5.3 安装后import torch报错

尝试这个万能修复命令:

pip install --upgrade --force-reinstall torch torchvision torchaudio

六、版本管理黑科技

强烈建议使用conda创建独立环境(每个项目一个环境):

conda create -n myproject python=3.9  # 创建环境
conda activate myproject  # 进入环境
conda list  # 查看当前环境安装的包
conda install pytorch=1.13.1 -c pytorch  # 指定版本安装

结语(老司机忠告)

安装PyTorch就像谈恋爱——强扭的瓜不甜!一定要根据自己电脑的实际情况选择版本组合。如果遇到问题,记住三件套:

  1. 检查版本对应关系
  2. 使用虚拟环境隔离
  3. 善用conda clean --allpip cache purge清理缓存

(终极秘籍)实在搞不定的时候,试试Docker大法!官方镜像已经配置好所有依赖:

docker pull pytorch/pytorch:1.13.1-cuda11.6-cudnn8-runtime

现在你已经掌握了PyTorch安装的终极奥义,快去征服深度学习的世界吧!如果还有疑问,欢迎在评论区call我~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值