多维度注意力机制下网络舆情视觉情感识别模型-中文核心代码复现_哔哩哔哩_bilibili
摘要:【目的】为弥补当前视觉情感分析研究的不足,构建基于 ResNet34改进的情感分析模型,分析和提高 图像情感分类的精度。【方法】首先基于ResNet34架构建立视觉情感识别模型,然后通过融合CBAM模块和 Non-Local模块,对情感特征进行学习、表示,最后利用以上模型对情感特征进行分类识别,并且与VGG16和 ResNet50模型进行对比以验证构建模型的优越性及精度。【结果】通过实验验证所构建的模型的识别效果, 研究结果表明模型的准确率、精确率、召回率和F1值分别达到84.42%、84.10%、83.70%和83.80%。与基线模 型进行对比,所提模型的准确率相比于VGG16和ResNet50模型分别提升4.17和3.44个百分点,F1值分别提 升4.20和3.30个百分点。【局限】测试的数据集规模相对不大,未采用皮尔曼系数等计算标注的效果,未将基 于视觉的情感分类算法进行比较。【结论】从视觉情感分析视角对情感识别模型进行优化,补充了情感计算 的分析模态,为舆情信息情感特征提取和分析提供了支撑。