数据结构与算法——二叉树

二叉树

这篇博客主要针对代码实现,有关树和二叉树的基本概念书上讲的贼清楚,我觉得我再讲一遍也不会讲的比书上好了,所以大家如果基本概念有问题,直接看书吧 ^ ç ^

二叉树的存储结构

二叉树的存储结构有顺序存储结构链式存储结构两种,其中顺序存储结构的操作相对简单,但在二叉树较空的情况下空间利用率很低,所以在实际应用中,链式存储结构的应用更广泛。

链式存储结构

二叉树的链式存储结构中,每个节点都包含如下成分:

struct BTNode{ //"二叉树点"
    ElemType data; //用define把char定义为ElemType
    BTNode *lc,*rc; //lc是"left child"左孩子,rc是"right child"右孩子
};

data存储数据,lcrc分别指向左、右节点,相当于每个节点都有两个指针域的链表


二叉树的算法设计

在下面的代码中,部分代码用到STL中的栈stack和队列queue,头文件分别为<stack><queue>STL中的栈和队列采用类的成员函数的形式调用,这很方便地提供了一种可用的栈和队列的结构。

对栈和队列还不太熟悉的可以看一下之前的文章:

数据结构与算法——栈

数据结构与算法——队列

里面提到了栈和队列的基本思想,以及STL库的简单用法。

用字符串建立二叉树

二叉树有一种表示法为括号表示法,本算法的功能是读取一段括号表示法的二叉树,把它转化为链式存储结构的二叉树。

要成功设计本算法,就要先弄懂什么是括号表示法

什么是括号表示法?

括号表示法:将树的根结点写在括号的左边,除根结点外的其余节点写在括号中,并用逗号分隔

在二叉树中,除叶子结点外,每个节点都有两个子结点——左孩子和右孩子,所以“括号”的形式被固定下来了:父结点(左孩子,右孩子),比如:

  • A(B,C)是指这样的一个二叉树:

    在这里插入图片描述

  • A(B, )则是这样的:

    在这里插入图片描述

我们推广“左孩子”和“右孩子”的定义——不光是结点,我们把子树也看作孩子,那么:

  • 对于A(B,C(D,E))A的左孩子是B,右孩子是一颗子树C(D,E),这棵子树是这样的:

    在这里插入图片描述

    把整个子树作为“右孩子”,接到根结点上,得到了整体的二叉树,它应该是这样的:

    在这里插入图片描述

所以,如果我们有一段复杂一点的括号表示:

A(B(D,E(G, ) ),C( ,F) )

ps. 实际表达式中是不带空格的,我加上空格是为了方便大家看

那么,它应该是长这个样子的:

在这里插入图片描述

回顾上面的定义,结合这个复杂一点的例子,我们不难发现以下规律:

从头到尾扫描字符串,每当读取到:

  • 左括号 (的时候,代表接下来的元素应该是个孩子,而且是左孩子
  • 逗号 ,的时候,代表左孩子录入完了,该录入右孩子了,所以接下来应该出现一个右孩子
  • 右括号 )的时候,代表右孩子也录入完了,这个结点一共就俩孩子,也就是说这个结点的孩子全都录入完了,那么接着看下一个结点
  • 字符 的时候,根据之前读取到的是左括号还是逗号,决定这个元素当左儿子还是右儿子

接下来,我们用代码把上面的逻辑翻译一遍:

代码实现

如果不懂STL的栈,不要抗拒它,用我们学的同名函数来理解它的功能,比如入栈都是push,出栈都是pop,栈顶都是top

void CreateBTree(BTNode *&bt,char *str){
    stack<BTNode*> st; //STL的栈,类型为BTNode的指针
    bt=NULL; //根结点初始化为空
    int k; //用k记录左右儿子,1为左,2为右
    BTNode *p=NULL; //用p存储读取到的字符
    int len=strlen(str); //字符串str的长度为len
    for(int i=0;i<len;i++){
        if(str[i]=='('){
            k=1; //k计为左儿子
            st.push(p); //入栈
            continue;
        }
        else if(str[i]==')'){
            st.pop(); //出栈
            continue; //继续往后看
        }
        else if(str[i]==','){
            k=2; //k计为右儿子
            continue;
        }
        else{
            p=new BTNode(); //为p申请空间
            p->data=str[i]; //赋值
            p->lc=p->rc=NULL;
            if(bt==NULL) //如果bt为空,代表p为最开始的根结点
                bt=p;
            else
                if(k==1) //之前读取到左括号,说明p是左孩子
                    st.top()->lc=p;
                else if(k==2) //之前读取到逗号,说明p是右孩子
                    st.top()->rc=p;
        }
    }
}

你可能有个疑问:

如果是A(,B),那么读入(后,下一个字符是右孩子,不是左孩子呀

在上面的代码中,往二叉树插入元素的操作不是跟判断操作同步的,所以在找到(以后,我们进行的操作不是立马把p设为左孩子,而是继续扫描字符串,这样的话,紧接着我们又扫描到了,,这时候k又变成了2,所以最后p还是被安排为右儿子。


销毁二叉树

销毁二叉树的核心思想是,递归地找到二叉树的每个节点,然后分别释放它们的空间

递归过程很像:

先让某个节点把它的俩儿子都叫来,再把它嫩死,再让俩儿子把他们俩的孩子(一共四个孙子)叫来,来了以后再把俩儿子嫩死······

需要注意的是,要在某个节点彻底失去利用价值后再释放它,也就是说释放语句应该放在递归调用语句的后面,否则,释放后无法通过该结点找到它后面的节点。就像上面的例子中,如果儿子还没来,就把老子嫩死了,那就再也找不到儿子在哪了,儿子就失联了。

void DestoryBTree(BTNode *&bt){
    if(bt!=NULL){ //bt只要不是NULL,就把它的孩子叫来
        DestoryBTree(bt->lc); //让它叫左孩子
        DestoryBTree(bt->rc); //让它叫右孩子
        delete bt; //嫩死它
    }
}

求高度(深度)

我们约定每个节点都有一个左子树,有一个右子树,它俩的深度分别为lchrch,那么该结点的深度h满足

h=max(lch,rch)+1

比如在下面的二叉树中,求从节点B开始的树的深度:

在这里插入图片描述

由图:

  • 左子树的深度lch=1——D
  • 右子树的深度rch=2——E->G

所以从B开始计算的话,深度应该为2+1=3,也就是B->E->G

由此看来,我们只要从根结点开始,递归地找它的左右子树,按照上面的规则,就可以得到总的深度。

int BTHeight(BTNode *bt){
    int lch, rch; //左子树深度lch和右子树深度rch
    if(bt==NULL) return 0; //如果是空的,就说明没有长度,返回0
    else{
        lch=BTHeight(bt->lc); //左子树的深度
        rch=BTHeight(bt->rc); //右子树的深度
        if(lch>rch)return lch+1;
        else return rch+1;
    }
}

求结点个数

与求深度的思想类似,对于每个节点,它的左子树有num1个节点,右子树有num2个节点,那么从它开始的结点个数sum满足

sum=num1+num2+1;

利用上面的关系,递归地访问每个节点,就可以得到总的结点数

int NodeCount(BTNode *bt){
    int num1,num2;
    if(bt==NULL)
        return 0;
    else{
        num1=NodeCount(bt->lc); //左子树的结点个数
        num2=NodeCount(bt->rc); //右子树的结点个数
        return num1+num2+1;
    }
}

求叶子结点个数

与求结点个数一样,对于每个节点,它的左子树有num1个叶子节点,右子树有num2个叶子节点,它拥有sum个叶子节点,满足

sum=num1+num2;

利用上面的关系,递归地访问每个节点,就可以得到总的结点数

int LeafCount(BTNode *bt){
    int num1,num2;
    if(bt==NULL)
        return 0;
    else if(bt->lc==NULL&&bt->rc==NULL) //如果当前结点为叶子结点,说明找到了一个叶子结点,返回1
        return 1;
    else{
        num1=LeafCount(bt->lc); //左子树的叶子结点
        num2=LeafCount(bt->rc); //右子树的叶子结点
        return num1+num2;
    }
}

以括号表示法输出二叉树

采用上面“用字符串建立二叉树”的逆向思维。

由于二叉树的括号表达式格式被固定为父结点(左孩子,右孩子),所以我们直接按照固定的格式输出。

  1. 输出父节点
  2. 判断它是不是有孩子,如果没有就算了;如果有,那么不管有几个,我们都要先输出一个(
  3. 由于左孩子不仅可能是结点,还可能是个子树,所以要递归地调用输出函数
  4. 判断有没有右孩子,如果有,就需要输出一个,
  5. 与左孩子一样,递归地调用输出函数,输出右孩子
  6. 输出)
void DispBTree(BTNode *bt){
    if(bt!=NULL){
        cout<<bt->data;
        if(bt->lc!=NULL|| bt->rc != NULL)
        {
            cout<<'(';
            DispBTree(bt->lc);
            if(bt->rc != NULL)
                cout<<',';
            DispBTree(bt->rc);
            cout<<')';
        }
    }
}

求树的宽度

二叉树的每一层都有一个宽度,树的宽度就是这些宽度中的最大宽度。我们如果能用一个数组记录每一层的宽度,最后再查找数组中的最大值,这个最大值就是树的宽度。

int Count[10010]; //用Count数组记录每一层的宽度,下标为层数,根结点是第0层
void WidConut(BTNode *bt, int dep){
    if(bt==NULL)
        return ;
    Count[dep]++;//记录当前层结点数+1
    dep++; //访问孩子结点时,层数+1
    WidConut(bt->lc,dep);
    WidConut(bt->rc,dep);
}

现在我们有了一个数组Count,在主函数中只要找到它的最大值,就可以得到整棵树的宽度:

int wid=0;
for(int i=0;Count[i]!=0;i++)
    wid=max(wid, Count[i]);

遍历

遍历主要分为:

  • 先序遍历
  • 中序遍历
  • 后序遍历
  • 层次遍历

可以直观地看出前三种之间的关系比较密切!没错!前三种的代码基本一样,只是执行顺序不同,其中:

  • 先序遍历

    1. 操作
    2. 递归访问左孩子
    3. 递归访问右孩子
  • 中序遍历

    1. 递归访问左孩子
    2. 操作
    3. 递归访问右孩子
  • 后序遍历

    1. 递归访问左孩子
    2. 递归访问右孩子
    3. 操作

我们以输出代替上面的“操作”,给出如下的遍历方案:

先序遍历
void PreOrder(BTNode *bt){
    if(bt!=NULL){
        cout<<bt->data<<" "; //操作
        PreOrder(bt->lc); //访问左孩子
        PreOrder(bt->rc); //访问右孩子
    }
}

中序遍历
void InOrder(BTNode *bt){
    if(bt!=NULL){
        InOrder(bt->lc); //访问左孩子
        cout<<bt->data<<" "; //操作
        InOrder(bt->rc); //访问右孩子
    }
}

后序遍历
void PostOrder(BTNode *bt){
    if(bt!=NULL){
        PostOrder(bt->lc); //访问左孩子
        PostOrder(bt->rc); //访问右孩子
        cout<<bt->data<<" "; //操作
    }
}

层次遍历

层次遍历与其他三种不同,其他三种人比较难理解,所以计算机理解起来比较容易,但最后一种人一看就懂,这就说明计算机理解起来会有点费劲。

层次遍历是从根结点出发,按照从上到下、从左到右的次序依次访问所有结点

人来理解这东西,就是把二叉树画出来,辈分一样的结点画在同一行,然后从上到下、从左到右遍历。

但问题是,计算机它不会画图,所以你就要想一个别的法子

void LevelOrder(BTNode *bt){
    queue<BTNode*> q; //STL中的队列
    q.push(bt); //根结点入队
    while (!q.empty()){ //当队伍非空的时候
        BTNode *p=q.front(); //取队首
        q.pop(); //队首元素出栈
        cout<<p->data<<" ";
        if(p->lc!=NULL) //如果有左孩子
            q.push(p->lc); //左孩子入队
        if(p->rc!=NULL) //如果有右孩子
            q.push(p->rc); //右孩子入队
    }
}

可能有点抽象,怎么就跟队列扯上关系了??

我们举个例子

层次遍历的案例

对于图中这个二叉树:
在这里插入图片描述

  • A入队

  • p=A,操作p相当于操作AA出队,B入队,C入队,队列如图
    在这里插入图片描述

  • p=B,操作p相当于操作BB出队,D入队,E入队,队列如图
    在这里插入图片描述

  • p=C,操作p相当于操作CC出队,F入队,队列如图
    在这里插入图片描述

  • p=D,操作p相当于操作DD出队,没孩子,队列如图
    在这里插入图片描述

  • p=E,操作p相当于操作EE出队,G入队,队列如图
    在这里插入图片描述

  • p依次为F``G,依次对二者进行操作,二者依次出队,队空,循环结束

至此,我们依次操作了ABCDEFG,也就是按照从上到下、从左到右的顺序遍历了树


1. 什么是二叉树二叉树是一种树形结构,其中每个节点最多有两个子节点。一个节点的左子节点比该节点小,右子节点比该节点大。二叉树通常用于搜索和排序。 2. 二叉树的遍历方法有哪些? 二叉树的遍历方法包括前序遍历、中序遍历和后序遍历。前序遍历是从根节点开始遍历,先访问根节点,再访问左子树,最后访问右子树。中序遍历是从根节点开始遍历,先访问左子树,再访问根节点,最后访问右子树。后序遍历是从根节点开始遍历,先访问左子树,再访问右子树,最后访问根节点。 3. 二叉树的查找方法有哪些? 二叉树的查找方法包括递归查找和非递归查找。递归查找是从根节点开始查找,如果当前节点的值等于要查找的值,则返回当前节点。如果要查找的值比当前节点小,则继续在左子树中查找;如果要查找的值比当前节点大,则继续在右子树中查找。非递归查找可以使用栈或队列实现,从根节点开始,每次将当前节点的左右子节点入栈/队列,直到找到要查找的值或者栈/队列为空。 4. 二叉树的插入与删除操作如何实现? 二叉树的插入操作是将要插入的节点与当前节点的值进行比较,如果小于当前节点的值,则继续在左子树中插入;如果大于当前节点的值,则继续在右子树中插入。当找到一个空节点时,就将要插入的节点作为该空节点的子节点。删除操作需要分为三种情况:删除叶子节点、删除只有一个子节点的节点和删除有两个子节点的节点。删除叶子节点很简单,只需要将其父节点的对应子节点置为空即可。删除只有一个子节点的节点,需要将其子节点替换为该节点的位置。删除有两个子节点的节点,则可以找到该节点的后继节点(即右子树中最小的节点),将其替换为该节点,然后删除后继节点。 5. 什么是平衡二叉树? 平衡二叉树是一种特殊的二叉树,它保证左右子树的高度差不超过1。这种平衡可以确保二叉树的查找、插入和删除操作的时间复杂度都是O(logn)。常见的平衡二叉树包括红黑树和AVL树。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值