47、动态垄断最小规模的紧界及多维无限字的递归性研究

动态垄断最小规模的紧界及多维无限字的递归性研究

1 动态垄断相关研究

1.1 动态垄断基本界

在图论中,对于不同类型的图和传播过程,动态垄断的最小规模有着不同的界定。
- 若图 (G) 不是二分图,它存在奇数环,环上的任意节点都是双向 1 - BP 的动态发电机(dynamo);对于二分图,不存在规模为 1 的动态发电机,但任意两个相邻节点构成一个动态发电机。
- 对于部分(i)中的界是平凡的。部分(ii)中,对于 (r) - 正则图 (G)((r \geq 2)),(\overleftarrow{MD}_r(K_n) = r) 且 (\overleftarrow{MD}_r(G) = n),这表明部分(i)中的界是紧的。

1.2 图的边添加与动态发电机规模

对于图 (G = (V, E)) 和 (G’ = (V, E’)),若 (E \subset E’),则 (MD_r(G’) \leq MD_r(G)) 且 (\overleftarrow{MD}_r(G’) \leq \overleftarrow{MD}_r(G))。通过不断向图中添加边,最终图在 (r) - BP 和双向 (r) - BP 中都会有最小可能规模为 (r) 的动态发电机。Gunderson 证明了若图 (G) 的最小度 (\delta \geq \frac{n}{2} + r)((r \geq 4) 时 (r) 可替换为 (r - 3)),则 (MD_r(G) = r)。在此基础上,有如下定理:
- 定理 5 :若图 (G = (V, E)) 的 (\delta \geq \frac{n}{2} + r),则在双

内容概要:本文详细介绍了一个基于Java和Vue的迁移学习与少样本图像分类系统的设计与实现,涵盖项目背景、目标、技术架构、核心算法、前后端代码实现、数据库设计、部署方案及应用领域。系统通过融合迁移学习与少样本学习技术,解决实际场景中样本稀缺、标注成本高、模型泛化能力差等问题,支持数据增强、预训练模型微调、原型网络(ProtoNet)等算法,并实现前后端分离、模块化设计、可视化监控与自动化工作流。项目提供完整的代码示例、API接口规范、数据库表结构及GUI面,具备高扩展性、安全性和易用性,适用于医疗、工业、农业等多个领域。; 适合人群:具备一定Java、Vue和深度学习基础的研发人员、AI算法工程师、计算机相关专业学生及从事智能图像分析的科研人员。; 使用场景及目标:①在样本极少的场景下实现高精度图像分类,如医疗影像、工业缺陷检测;②构建可扩展、可视化的AI训练与推理平台;③学习如何将Python深度学习模型与Java后端集成,掌握前后端分离的AI系统开发流程;④了解迁移学习、少样本学习在实际工程中的落地方法。; 阅读建议:建议结合文档中的代码示例与流程图,搭建本地开发环境进行实践,重点关注前后端交互逻辑、Python模型服务调用机制及数据库设计,同时可基于项目结构扩展联邦学习、多模态融合等高级功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值