- 博客(664)
- 收藏
- 关注
原创 嵌入式※~MCU~LWIP~TCPS/HTTPS等
单片机MCU中的加密通道, 使用各种的加密通道, http / tcp / mqtt 等。可能不在重复发了 ~~ 请看链接吧~~~
2024-10-24 14:36:09
875
1
原创 51c嵌入式~mbedtls~rsa
RSA算法在计算过程中存在较多的取模运算和幂运算,计算速度比对称加密算法要慢,所以不适合对大量数据进行加密和解密,在实际中常用于加密或解密小数据片段。mbedtls RSA算法中的生成秘钥对比较占用空间,再加上RSA算法计算过程涉及到大数运算,所以RSA算法对内存的消耗比较大。实际使用RSA算法中需要包含填充方案,在计算之前会对明文进行随机注入,这样在公钥和明文相同的情况下,也不会生成相同的秘文。对称加密算法,比如AES算法,在发送端(加密)和接收端(解密)使用相同的一份秘钥,称为共享秘钥。
2024-10-23 14:09:34
1481
1
原创 嵌入式※~CH395Q-UDP
注:下面还有个广播IP,255.255.255.255 ,是因为执行多播通信需要把UDP的目的地址配置为广播IP。上面的引脚分配把模块的TX引脚接到了单片机的PA3上,也就是串口2的RX上,如果用户使用了串口2,请注意!多播MAC地址是为了MAC过滤,后面会讲,用户不需要设置,默认不过滤MAC。单片机程序里面写的是把接收的服务器返回给服务器,并使用串口打印接收的消息。要想模块使用SPI通信,模块的TX引脚需要在模块重启之前设置为低电平.提醒:无论是SPI,USART,并口,程序操作步骤都是一样的!
2024-10-20 00:01:06
1491
10
原创 ipsec~strongSwan
应该这俩个导致启动失败, 其实都是一个原因arm没tun, 但一般内核是有的就是没开启 需要重新编译一下了, 每个平台不一样 ,所以自己搞吧 //1 ( 建个文件去就行,不过正常应该自己能生成啊 不用手动建,建完了 后面还是报错 )//2 ( 系统里没tun的问题上面也是~~ )
2024-10-12 14:26:13
1150
1
原创 whaosoftの物联网各种设备协议
需要的可以联系我 仓库地址在 github=== /whaosoft/wdata-collection-lib 中自己搜吧 > 有没有感兴趣哒。准备开源-物联网各种PLC及各种非PLC设备(变频器等)协议 - go/c 语言版本 (适用于arm32/64及stm32)Arcnet 没什么资料 也没开发板 真正的环网呀~~西门子 smart200 , s1200。还有这3钟老外常用的。
2024-10-10 19:06:05
582
1
原创 whaosoftの各芯片各种板~使用日记
AI及非AI的开发板使用心得哦~~ 逐步完善哦~ whaosoft aiot 欢迎一起来交流哦 ~1年多过去了 记得之前东西好像不多 但还好有个微信群 看着帖子也多了 群里也很热闹 还不错哦~~美中不足 竟然cpu都不支持can rk3568还有几个 呢~~我就想知道 这个就没个带桌面的镜像吗 (发的时候还没)做了一个外围板子 准备开源一下pcb等 不知道有人需要吗。部分评估板及核心板及开发板 , 用到CAN CANFD等。这里全是cpu 不说MCU哦~atlas200 第一代。这家系统有点难用哦~~
2024-09-21 15:56:52
374
1
原创 51c嵌入式~mbedtls移植各MCU
我的嵌入式专辑 由于还没发完 请去这里看原贴~~ 待更新完 发回来~~ https://143ai.com/
2024-09-15 23:45:25
1521
1
原创 51c视觉~合集59
然而,现实世界的数据是持续不断产生的,模型需要具备“终身学习”的能力,即在不忘记旧知识的前提下,不断从新数据中学习。如下图所示,在终身学习的各个阶段,旧数据集(Market1501)的特征始终能保持良好的类内紧凑性和类间可分性,即使在多个新数据集不断加入后,其特征结构也未被破坏,证明了模型强大的知识保持能力。然而,这会导致一个新问题:用新模型提取的查询(Query)特征,与用旧模型提取的库(Gallery)特征,两者处于不同的特征空间,直接比较会“风马牛不相及”,导致识别性能急剧下降。
2026-01-06 15:42:18
387
1
原创 51c自动驾驶~合集64
推理时,DriveLaW-Video 首先将历史帧、文本提示等编码为潜在特征并进行去噪生成视频,同时,其中间层的潜在特征被提取出来作为关键的感知信号,连同自车状态、高层指令一起输入给 DriveLaW-Act,后者通过流匹配(Flow Matching)生成最终的平滑轨迹。一个完全预训练的生成器比没有经过驾驶域预训练的生成器带来了 +3.2 PDMS 的提升,这表明更大的语料库加深了模型对驾驶物理规律的掌握,并转化为更强的规划能力,表现出明显的规模定律(scaling law)。
2026-01-04 12:37:49
686
原创 51c~视觉~红外小目标检测~合集1
本文提出了一个多尺度方向感知网络(MSDA-Net),首次将高频方向特征作为领域先验引入红外小目标检测网络。为充分挖掘这类特征,该团队设计了两个关键模块:其一是无参数的高频方向注入(HFDI)模块,用于将原始图像的高频方向信息直接嵌入特征提取的早期阶段;其二是多尺度方向感知(MSDA)模块,用于促进不同尺度下局部关系的充分提取和不同方向上关键特征的充分感知。
2025-12-27 12:58:35
1135
1
原创 51c大模型~合集191
哈萨比斯Jeff Dean联手执笔谷歌2025年度AI综述:Gemini 3 Pro/Flash以推理+多模态刷新多项基准,开源Gemma加码端侧;Agent重塑编码、搜索与创意工具,AlphaFold、DeepThink夺金,量子Echoes与Ironwood TPU夯实硬件,长文描绘可协作、可行动、可科研的通用智能路线图。如何回顾2025年的AI进展?今年王者归来的谷歌,刚刚由Jeff Dean和哈萨比斯牵头,完成了年度总结和趋势展望报告——这是AI Agent、推理和科学发现的一年。
2025-12-25 02:59:15
361
1
原创 51c自动驾驶~合集63
自动驾驶技术诞生到发展至今,已经有十多年了,随着技术的不断迭代,以及大模型技术的蓬勃发展,如今的自动驾驶仿佛进入了一个“百家争鸣”的时代。如果说早期的模块化设计像是手工打造的传统汽车,
2025-12-23 22:37:11
753
1
原创 51c视觉~3D~合集10
它能识别万物,能描述复杂的图像内容,但在需要深度和空间想象力的任务上,总显得有些力不从心(这也是为什么近期频繁看到空间推理相关论文的原因)。”这种需要虚拟视角转换的问题,GPT-4o和Qwen3-VL都答错了,而N3D-VLM凭借其强大的3D空间感给出了正确答案。在N3D-Bench以及SpatialRGPT-Bench等多个推理基准上,N3D-VLM-7B全面超越了包括GPT-4o、Gemini-2.5-Flash和Qwen3-VL-8B在内的所有对手,成为了新的。”这类问题,它们往往就“晕头转向”了。
2025-12-23 13:51:58
787
1
原创 51c视觉~合集58
与密集方法相比,RCM在大视角变化场景下显示出显著的精度优势,分别领先LoFTR和MatchFormer(+9%,+11%,+12%)和(+10%,+12%,+10%)。然后,通过无冲突的粗匹配模块,以多对一的方式对稀疏和密集特征进行匹配。由于目标图像中的匹配点是基于回归得到的,而不是预先检测到的点,因此RCM(Regression-based Coarse Matching,基于回归的粗匹配)在SfM(Structure from Motion,运动恢复结构)任务中缺乏离散的轨迹,需要额外的适应策略。
2025-12-23 13:51:15
627
1
原创 51c视觉~合集57
本文结合相关论文介绍了一些半监督目标检测算法,即如何利用大量的 unlabeled data 提升模型的检测性能。什么是半监督目标检测?传统机器学习根据训练数据集中的标注情况,有着不同的场景,主要包括:监督学习、弱监督学习、弱半监督学习、半监督学习。由于目标检测任务的特殊性,在介绍半监督目标检测方法之前,我们查看一下目标检测在这四个方向下的具体设定,如下图所示(不包括无监督学习):图一 目标检测的不同的 setting拥有大规模带标签的数据,包括完整的实例级别的标注,即包含坐标和类别信息;
2025-12-22 13:52:24
937
1
原创 51c扩散模型~合集5
X-Slim最核心的启发在于,它证明了通过设计一套层次化、动态的控制策略,可以在不牺牲太多质量的前提下,将缓存加速技术推向一个新的高度。这种“Push-then-Polish”的思想,不仅仅适用于扩散模型,对于其他具有迭代计算特性的深度学习模型,或许也具有一定的借鉴意义。虽然相比全量计算的基准(2.32)有极微小的损耗,但这一表现大大优于之前的 SOTA 方法(如 -DiT 的 2.69),在速度与质量之间取得了最佳平衡。X-Slim的巧妙之处在于,它没有粗暴地混合各种缓存策略,而是设计了一套优雅的。
2025-12-20 15:32:40
711
1
原创 51c视觉~合集56
首先,我们在 Depth - Anything v2 的基础上,提出了一种基于令牌缩放器的微调机制,并采用了一种新颖的优化损失,以增强其即使在处理具有挑战性的表面时也能准确预测深度的能力。基于此,我们深入分析了图像退化的物理过程,研究了暗光退化和模糊退化在振幅和相位上的表达形式,并提出了傅里叶解耦网络 (FDN),能够端到端实现联合暗光增强和去模糊,还可以实现用户自定义亮度恢复。值得注意的是,相较于SOTA方法VQCNIR,我们的FDN在性能更优的同时,参数量减少了83.3%。
2025-12-20 00:44:22
901
1
原创 51c自动驾驶~合集62
理想最开始的VLM其实就是包含了2个模型,端到端和VLM,也就是所谓的快慢思考,端到端负责快思考,快决策,VLM负责慢思考,然后把结果反馈给端到端,由端到端来完成决策,而VLA就是一个模型思考和决策。现在大部分 VLA、VLM 的做法,是先有一个语言模型基座,然后在一些图像数据上训练一个插件,把视觉转成语言,再输入到语言模型里。到这,其实整体的架构已经就比较清楚了,端到端是自动驾驶真正由人工进入智能的开始,VLA是端到端基础上进一步加入了语言模型,而世界模型是对空间的理解和重塑,跟前两者是完全不同的东西。
2025-12-18 20:01:41
946
1
原创 51c自动驾驶~合集61
相比去年,博世可谓成果颇丰,大方向上博世跟上了前沿的脚步并开始打造自己的特色。从 Robustness 1.0 的自证其名,到 Robustness 2.0 的赋能系统,再到 Robustness 3.0 的开放世界征途,自动驾驶世界模型正处于爆发的前夜。与传统的端到端模型不同,DWM 不仅关注从传感器到控制的映射,更致力于构建对物理世界的内部表征,预测环境的未来演变。它不仅能“看到”图像中的内容,更能“理解”场景背后的逻辑与风险,甚至在未经过专门训练的情况下,展现出接近人类驾驶员的常识判断与安全意识。
2025-12-13 01:01:41
1287
1
原创 51c视觉~合集55
要么生成的异常真实性不足、掩码精度低,且难以跨领域复用。试想一下,在工业质检、医疗影像诊断、日常物品瑕疵识别等场景中,无需任何示例缺陷样本,也无需针对特定领域微调模型,就能根据文字或图像提示,自动生成真实且符合语义的异常,还能精准输出缺陷掩码,大幅提升下游异常检测模型的性能。Anomagic引入对比掩码细化策略,通过计算输入正常图像与生成异常图像的像素级差异,结合预训练的MetaUAS模型,自动生成高精度缺陷掩码,实现异常区域与掩码的像素级对齐,大幅提升生成数据的实用性。
2025-12-11 23:03:55
1118
1
原创 51c视觉~YOLO~合集14
在智能交通系统领域,实时检测车辆事故的能力变得越来越重要。该项目利用先进的计算机视觉技术,采用最先进的对象检测模型 YOLOv11 来准确识别和分类车辆事故。主要目标是通过向紧急服务提供及时警报并实现更快的响应时间来提高道路安全。YoloV11 是 ultralytics 的 Yolo 最新版本,与以前的版本相比,有几个优点和最大的功能,有关更多信息,请查看官方 ultralytics yoloV11 文章YOLOv11来了:将重新定义AI的可能性本文项目涉及几个步骤,这是一个简单的原型级项目,步骤是。
2025-12-09 17:59:35
954
1
原创 51c视觉~3D~合集9
这就导致了一个问题:当输入图像中混入了无关的背景、模糊的照片或完全不搭边的“捣乱分子”时(就像我们从网上随手一搜图片,总会遇到不相关的结果一样),这些模型就容易“翻车”,重建出的三维结构会变得很糟糕,出现很多噪声和伪影。通过对VGGT内部机制的深入分析,研究人员发现,在模型的特定层(特别是最后的几层),其内部的注意力(attention)和特征表示(feature representations)会自然而然地表现出对离群视图的抑制行为。没有明确视图过滤的VGGT模型,其性能会随着噪声视图数量的增加而下降。
2025-12-04 19:40:30
699
1
原创 51c嵌入式~电感~合集1
如果我们逐渐升高电流的频率,由于电感对交流电有阻碍作用,通过电感的信号会慢慢变小,直到达到某一个频率,当高于这个频率之后的电流再也无法通过,这时候就形成了低通滤波器,这个频率就叫做截止频率,公式为 f=R/(2πL)。当交流信号通过线圈时,线圈两端将会产生自感电动势,自感电动势的方向与外加电压的方向相反,阻碍交流的通过,所以电感器的特性是通直流、阻交流,频率越高,线圈阻抗越大。电感器俗称电感,本质上是一个线圈,有空心线圈也有实心线圈,实心线圈有铁芯或者其它材料制成的芯,电感的单位是“H”,简称“亨”。
2025-12-02 13:27:42
785
1
原创 51c视觉~合集54
从HSMR的开创性探索,到SKEL-CF的集大成与飞跃,我们看到了一条从“概念可行”到“性能领先”的技术演进之路。传统的参数化模型,如大家熟知的SMPL,虽然在视觉上取得了巨大成功,但其简化的骨骼结构常常导致违反生理常识的“反关节”等不自然姿态,限制了其在生物力学、运动科学、医疗康复等高精度领域的应用。更令人印象深刻的是,SKEL-CF的性能不仅超越了同赛道的HSMR,甚至已经能够与当前最顶尖的SMPL模型(如CameraHMR)相媲美,在MOYO-Hard这种极端困难的场景下更是实现了反超。
2025-12-02 00:11:43
1106
1
原创 51c深度学习~合集13
为了利用VGGT在头部嵌入层面的标记的空间局部性和时间对应性,我们引入了一种时间重排序和头部级自适应异常值过滤技术,该技术帮助HTTM高效合并标记,同时保留其独特性,从而在长输入序列上实现高达7倍的显著加速,且性能无下降。如图2所示,我们面对的不是简单的"红苹果"和"绿苹果",而是像"一只金毛猎犬在公园草坪上追赶红盘"、"盘子里放着鲜红的草莓、黄香蕉和深紫色的葡萄"这样高度复杂的场景。在图5中,我们可视化了来自三个30帧重建的8个连续帧的深层(第14层)查询标记的相似度,这些重建具有不同程度的视觉连续性。
2025-12-01 22:39:40
1160
1
原创 51c嵌入式~模拟电路~合集1
我自己的原文哦~ https://blog.51cto.com/whaosoft143/14352155Nyquist采样定理 尽管大家都知道,但还是提一提大牛奥本海姆的《信号与系统》,来捋一捋几个点: 带宽有限(band-limited) 采样频率大于2倍信号最高频率后可以无失真的恢复出原始信号。 实际中,信号往往是无线带宽的,如何保证带宽有限?所以,我们在模拟信号输入端要加一个低通滤波器,使信号变成带宽有限,再使用2.5~3倍的最高信号
2025-11-30 14:07:26
734
1
原创 51c自动驾驶~合集60
对于 il & rl mix + event reset,本质都是为了限制 rl 的探索,核心原因有 2 个:一个是缩小 rl的搜索空间,加速收敛;剩下就是 rl 的常规操作了,并行 N个 worker,随机选择一个 3dgs-env 进行 rolllout,把 transition 存在 buffer 里,结束后随机选择下一个3dgs-env。按照上面的逻辑,纵向有 2 个分别是“减速”和“加速”,横向也有 2 个:、,分别用来计算“横向位置偏差的辅助目标”和“纵向朝向偏差的辅助目标”。
2025-11-29 19:59:42
892
1
原创 w~大模型~合集6
受大语言模型进步的启发,研究者开发了一种基于序列的方法,将三角形网格作为三角形序列进行自回归生成。这种方法能生成干净、连贯和紧凑的网格,具有边缘锐利和高保真的特点。研究者首先从大量的 3D 物体网格中学习几何词汇的嵌入,从而能够对三角形进行编码和解码。然后,根据学习到的嵌入词库,以自回归下索引预测的方式训练用于网格生成的 Transformer。为了学习三角形词汇,研究者采用了图形卷积编码器,对网格的三角形及其邻域进行操作,以提取丰富的几何特征,捕捉 3D 形状的复杂细节。
2025-11-25 22:46:32
870
1
原创 51c嵌入式~STM32-基础~合集1
MCU 内部是远比 MCU 外部电路更复杂的微电子电路,内部线路间距小,不同功能间可能只是由电子开关或多路复用器做选择,当高频干扰进入MCU 后,干扰可以在看似不直接相连的电路间耦合而影响MCU 的正常工作。重要的是避免干扰进入MCU。在排查干扰传递的路径时,不要将目光局限于直接相连的电路或管脚。....
2025-11-25 17:20:56
325
1
原创 51c视觉~合集53
近年来,VLA模型,如大家熟知的RT-2、OpenVLA等,通过结合大规模网络数据和机器人操作数据,在许多短时程任务上展现了惊人的零样本泛化能力。大多数VLA模型处理历史信息的方式比较粗暴,比如简单地平均或截断,这很容易导致“灾难性遗忘”,让机器人在任务中途就忘了“我是谁,我在哪,我该干嘛”。POE则另辟蹊径,将机器人的“好奇心”建立在更有意义的物理交互上。总的来说,EvoVLA通过一个设计精巧的自监督框架,有效地解决了VLA模型在长时程任务中的阶段幻觉和记忆遗忘问题,为通用机器人的发展扫清了一大障碍。
2025-11-22 08:55:34
558
1
原创 嵌入式分享合集3
地弹、振铃、串扰、信号反射······这几个在信号完整性分析中是分析的重点对象。初学者一看:好高深!其实,感觉高深是因为你满天听到“地弹”二字,却到处找不到“地弹的真正原理”。如果你认真读笔者的“噪声的起源”章节,其实你已经认识了地弹!地弹,就是地噪声!
2025-11-18 15:05:08
422
1
原创 51c视觉~合集52
SemanticVLA,全称“语义对齐的稀疏化与增强”(Semantic-Aligned Sparsification and Enhancement),它的核心思想非常巧妙:在感知信息时做“减法”,只关注与任务最相关的部分,同时在“理解”层面做“加法”,增强语义和空间信息的融合,从而实现更高效、更精准的机器人操作。它不仅在仿真和真实世界任务中取得了SOTA的性能,更重要的是,它以一种优雅且高效的方式,为如何构建更智能、更实用的机器人操作代理提供了一个全新的思路。的总体成功率,位列第一。
2025-11-15 08:58:40
793
1
原创 51c视觉~3D~合集8
无论是加速我们对实验室中疾病的理解,彻底改变我们讲述故事的方式,还是在我们因疾病、受伤或年老而最脆弱的时刻给予支持,我们都正处在一项新技术的风口浪尖,这项技术将提升我们最珍视的生活的方方面面。Marble与其他世界模型产品——甚至与WorldLabs自家的实时模型RTFM——的不同之处在于,它能创建持久化、可下载的3D环境,而非在用户探索时实时生成世界。今天起,全球上线,人人可用。历史上第一次,我们有望构建出与物理世界如此协调的机器,以至于在我们面临的最严峻挑战中,可以将它们视为真正的伙伴。
2025-11-14 17:13:32
1303
1
原创 51c视觉~合集51
而近年来大火的 NeRF 和 3DGS 技术,虽然渲染效果惊艳,但通常需要离线训练,无法满足机器人实时在线的需求。这意味着要同时捕捉到环境的真实外观(光学)、精确的结构形状(几何)以及理解场景中的物体(语义)。未来的工作将专注于开发集成的跟踪模块和实现动态实例辨别,使OmniMap成为一个更通用的即插即用型场景表示解决方案。OmniMap 作为首个在光学、几何和语义上同时实现高精度、实时性和模型紧凑性的通用在线建图框架,其贡献是里程碑式的。一个通用的建图框架,其价值最终体现在对下游任务的支持上。
2025-11-09 02:30:00
1052
1
原创 51c视觉~合集50
另一方面,视频数据本身也变得多样化,除了常见的RGB图像,还可能包含深度信息(RGB+Depth)、热成像信息(RGB+Thermal)或者事件流信息(RGB+Event),这些辅助模态在光照不足、遮挡等复杂环境下能显著提升跟踪的鲁棒性。为了证明每个模块的有效性,作者进行了消融研究。通过这种方式,细胞核的上下文信息可以增强组织分割的一致性,而组织的边界反馈则为区分密集的细胞核提供了约束。这意味着,如果我们要处理不同类型的输入或不同模态的视频,就需要开发或部署多个独立的模型,这无疑增加了开发和部署的复杂性。
2025-11-08 12:03:41
662
1
原创 51c大模型~合集74
我自己的原文哦~ https://blog.51cto.com/whaosoft143/12317463解锁大模型知识记忆编辑的新路径,浙大用「WISE」对抗幻觉本篇工作已被 NeurIPS(2024 Conference on Neural Information Processing Systems)会议接收,文章第一作者为浙江大学软件学院硕士生王鹏,师从张宁豫副教授。在当前人工智能的迅猛发展中,大模型的知识记忆能力成为了提升智能系统理解和推理能力的关键
2025-11-07 15:49:24
1225
1
原创 51c大模型~合集70
我自己的原文哦~ https://blog.51cto.com/whaosoft143/12238644AI作曲缺数据,浙大GTSinger数据集上线:适配所有歌声任务、带有真实乐谱本文的作者主要来自于浙江大学。第一作者是浙江大学计算机学院的博士生张彧,导师为赵洲教授,主要研究方向是音乐合成,音频生成和自然语言处理,并在 NeurIPS、AAAI、ACL、EMNLP 等会议发表相关论文。共一作者是来自浙江大学计算机学院的本科生潘昶皓。传统的歌声任务,如歌声合
2025-11-07 12:10:35
1376
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅