机器学习与文本挖掘技术综合指南
1. 模型诊断与调优
在机器学习中,模型的准确性可能会受到多种常见问题的影响,例如未选择创建类别的最佳概率截止点、方差和偏差等。为了优化模型,我们可以采用不同的调优技术,如装袋(Bagging)、提升(Boosting)、集成投票(Ensemble Voting)以及网格搜索/随机搜索和贝叶斯优化技术进行超参数调优。
同时,对于物联网数据,我们还可以使用降噪技术。以下是一段对传感器数据进行降噪处理的代码示例:
y = new_wp.reconstruct(update=False)[:len(x)]
df[column] = y
return df
# denoise the sensor data
df_denoised = wp_denoise(df.iloc[:,3:4])
df['Date'] = pd.to_datetime(df['Date'])
plt.figure(1)
ax1 = plt.subplot(221)
df['4030CFDC'].plot(ax=ax1, figsize=(8, 8), title='Signal with noise')
ax2 = plt.subplot(222)
df_denoised['4030CFDC'].plot(ax=ax2, figsize=(8, 8), title='Signal without noise')
plt.tight_layout()
为了进一步了解这些技术,我们可以参考以下额外资源:
| 名称 | 网页 | GitHub 仓库 |
| — | —
超级会员免费看
订阅专栏 解锁全文
6805

被折叠的 条评论
为什么被折叠?



