- 博客(283)
- 资源 (16)
- 收藏
- 关注
原创 算法模型部署后_python脚本API测试指南-记录3
本文提供了多种测试API的方法,包括使用Curl命令和Python脚本。通过Curl命令,用户可以发送图像文件到API并获取预测结果。Python脚本则提供了更灵活的方式,用户可以通过命令行参数指定图像路径,并选择输出详细的JSON响应或简化的预测结果。测试时需确保API服务正在运行,并根据实际情况修改脚本中的URL和图像路径。这些方法适用于不同场景,帮助用户快速验证API的功能和性能。
2025-05-12 15:21:21
702
原创 算法模型部署(非docker版本)- 完整部署文档-ubuntu(香橙派开发板测试)学习记录2
本项目是一个基于机器学习的局部放电(PD)图像识别系统,使用支持向量机(SVM)算法实现对不同类型局放图像的自动分类。系统通过FastAPI框架提供RESTful API服务,可以接收上传的图像并返回识别结果。
2025-04-27 08:15:00
1126
原创 GroundingDINO + SAM 实战:CPU 环境下的开放词汇检测与分割
本文介绍了在CPU环境下使用GroundingDINO与SAM组合实现开放词汇检测与分割的实战方法。GroundingDINO通过文本提示词检测目标框,SAM基于这些框进行精细分割,无需专门训练即可识别多种对象。文章详细讲解了环境准备、权重下载、命令行推理和GUI工具使用,并提供了提示词模板和参数调优策略。该方案适合快速验证和低样本场景,尤其对实体对象识别效果较好,但对区域类目标稳定性较弱。文中还包含常见问题排查和工程实践建议,为开发者提供了一套完整的CPU环境解决方案。
2026-01-16 06:45:00
724
原创 基于 EPUB 转换工具的实践分享:TXT / PDF 一键导出
本文分享了一款实用的EPUB格式转换工具,可将EPUB电子书快速转换为TXT或PDF格式。该工具提供GUI和CLI两种操作模式,支持按目录顺序提取正文内容,导出UTF-8编码的TXT文件便于检索处理,PDF导出则支持自定义字体以避免中文乱码。作者已将该工具打包为Windows可执行文件,用户可直接下载使用,也可通过Python源码运行。工具获取方式为关注公众号"码海寻道"回复关键词或直接访问提供的网盘链接。该工具适合需要处理电子书内容的用户,作者也表示愿意根据需求开发更多定制化工具。
2026-01-15 10:27:44
795
原创 Codex CLI 默认指向 q.quuvv.cn 的排查与修复(Windows)
在 Windows 上使用 Codex CLI 时,终端提示请求地址为,导致连接失败。即使卸载了第三方切换工具(如 CC Switch),新开的 CMD 依旧默认指向该地址。
2026-01-15 06:15:00
337
原创 GBDT 生态的未来演化:从技术竞争到协同标准的形成
神经符号系统:将决策树嵌入可微分架构。联邦学习:轻量化、通信高效的梯度压缩。可解释性与公平性:不再仅追求最高的 AUC,而是追求更值得信赖的系统韧性。你会倾向于在你的下一个项目中使用哪种框架?是追求极致速度的 LightGBM,还是稳如泰山的 XGBoost?欢迎在评论区讨论。
2026-01-14 19:03:32
546
原创 在个人电脑上创建 Codex Skill:编写、打包与分发全流程
本文详细介绍了在个人电脑上创建、打包和分发Codex Skill的全流程。主要内容包括:1) Skill的概念与典型用途,如固定工作流程和标准规范;2) Skill的基本目录结构;3) 使用脚本初始化Skill的方法;4) 编写SKILL.md的关键要点,包括YAML frontmatter要求和内容编写原则;5) Skill校验与打包步骤;6) 分发与安装方法;7) 完整流程回顾。文章还提供了常见问题解答,帮助用户将高频重复任务固化为可复用的Skill,提升工作效率。
2026-01-14 05:15:00
539
原创 Windows 上 Codex CLI 误用旧 base_url 的排查与修复实录
Plus 登录不会改变 base_url,问题大多来自环境变量或代理工具。Win + R 打开的 CMD 会继承 explorer.exe 的环境。若系统级环境变量和 AutoRun 都为空,通常就是某个启动程序在注入。排查时先锁定,再从启动项/代理工具入手。
2026-01-13 06:15:00
705
原创 【效率工具】告别 Windows 搜索废柴:三款顶级本地文档全文检索神器
本文推荐三款Windows本地文档全文检索工具,解决Everything无法搜索文件内容的痛点。AnyTXT Searcher适合办公用户,支持多种格式且内置预览;DocFetcher是开源首选,支持布尔逻辑搜索;Agent Ransack无需索引,可搜索压缩包内容。三款工具各有优势:AnyTXT速度最快,DocFetcher适合开发者,Agent Ransack适合偶尔使用。文章还提供了各软件的下载地址和配置建议,帮助用户根据需求选择最合适的全文检索工具。
2026-01-12 10:04:53
1064
原创 Codex Skills 创建、打包与安装实战指南
本文系统介绍了Codex技能包的创建、打包与安装流程。主要内容包括:1) 技能包的最小结构要求,必须包含SKILL.md核心文件;2) 目录组织最佳实践,建议拆分references、scripts和assets目录;3) SKILL.md编写规范,需包含清晰的使用场景、工作流程和输出说明;4) 提供了Python打包脚本示例,可自动检查必备文件并生成zip包;5) 三种安装方式:本地复制、GitHub仓库分发和使用技能安装器。文章还强调了技能设计原则:保持最小必要、渐进披露细节、确保可操作性和可移植性。
2026-01-12 06:30:00
1479
原创 电力设备局部放电监测与诊断技术深度调研报告(2026)
电力设备局部放电监测与诊断技术调研摘要 随着特高压电网发展,电力设备绝缘可靠性面临更高要求。局部放电(PD)是绝缘劣化的主要征兆,也是引发故障的重要因素。本报告系统分析了PD的物理机制、检测标准、传感技术及智能诊断方法。 核心发现: 标准体系:IEC 60270和GB/T 7354等标准规定了PD测量方法及限值,GIS等设备要求严苛(≤5 pC)。 传感技术:HFCT、UHF、TEV及超声波等多模态检测成为趋势,UHF法因抗干扰强成为GIS监测的“金标准”。 智能诊断:小波变换等算法提升信噪比,AI模型实现
2026-01-11 01:00:00
728
原创 DeepLabCut 技术深度解析:从算法原理到源码实现
Lc∗pvifp∈limbc0otherwiseLc∗pv0ifp∈limbcotherwise其中v\mathbf{v}v是从关键点j1j_1j1指向j2j_2j2的单位向量。"""生成部件亲和场Args:joint1, joint2: 两个关键点的坐标thickness: 亲和场的宽度Returns:paf_x, paf_y: 两个通道的亲和场"""# 单位向量# 在两点之间的区域填充向量场。
2026-01-10 06:30:00
1653
原创 Code-Simplifier 插件使用指南:安装与日常用法
摘要 本文介绍Code-Simplifier插件的安装与使用方法,该插件可优化代码的可读性、一致性和可维护性而不改变功能。安装仅需执行claude plugin install code-simplifier命令,使用时通过@agent方式调用,附加固定提示词即可。建议对核心逻辑进行回归测试,并可补充具体风格要求。该工具适合需要提升代码质量但保持功能不变的开发场景。
2026-01-10 04:30:00
1282
原创 DeepLabCut 完全入门指南:从零开始实现小鼠行为追踪
根据你要追踪的目标,定义需要追踪的关键点。bodyparts:- snout # 鼻尖- leftear # 左耳- rightear # 右耳- neck # 颈部- spine1 # 脊柱点1- spine2 # 脊柱点2- spine3 # 脊柱点3- tailbase # 尾根- tail1 # 尾部中点- tailtip # 尾尖命名建议使用简洁、有意义的英文名称避免使用空格和特殊字符保持命名一致性skeleton:- - snout- neck- neck。
2026-01-09 06:15:00
619
原创 XGBoost 从入门到精通:小白也能看懂的完整指南
XGBoost(eXtreme Gradient Boosting,极致梯度提升)是一个把 GBDT 算法优化到极致的机器学习库。决策树:基础拳法,简单易学随机森林:群殴战术,人多力量大GBDT:连环掌法,一招接一招XGBoost:将连环掌练到极致,每一招都精准有力创新点解决的问题核心思想目标函数过拟合损失 + 正则化二阶泰勒展开收敛慢利用二阶梯度信息分裂增益公式树结构选择直接算出最优分裂缺失值处理数据不完整自动学习最佳方向工程优化训练慢并行、缓存、核外"""
2026-01-08 06:45:00
2481
原创 CatBoost 从入门到精通:小白也能看懂的完整指南
CatBoost(Categorical Boosting)是俄罗斯搜索巨头 Yandex 开发的一个对类别特征特别友好的梯度提升算法。XGBoost:经验丰富的老师傅,什么都能做,但需要你准备好食材LightGBM:快手厨师,做菜又快又省料CatBoost:智能厨师,食材不用洗不用切,直接扔进去就能出好菜普通决策树:每个节点可以选择不同的特征和分裂点普通树:[年龄<30?/ \[收入>5万?] [学历?] ← 不同节点用不同特征/ \ / \A B C D。
2026-01-07 05:30:00
711
原创 LightGBM 从入门到精通:小白也能看懂的完整指南
LightGBM(Light Gradient Boosting Machine)是微软开发的一个又快又好的机器学习算法。传统算法是普通家用车:能跑,但不快XGBoost 是跑车:很快,但油耗高(内存大)LightGBM 是电动超跑:既快又省油(内存小)技术解决的问题核心思想效果直方图分裂点搜索慢连续值离散化速度提升 100x,内存降低 8xGOSS样本太多保留大梯度,采样小梯度样本减少 70%+EFB特征太多捆绑互斥特征特征减少 40-95%Leaf-wise。
2026-01-06 06:45:00
1216
原创 XGBoost、LightGBM、CatBoost 原理深度剖析与全面对比
本文深度剖析了三大梯度提升框架XGBoost、LightGBM和CatBoost的核心原理与差异。XGBoost通过二阶泰勒展开优化GBDT,引入正则化项防止过拟合,并采用贪心分裂算法和加权分位数草图提升效率。LightGBM专注于大规模数据的高效训练,CatBoost则在类别特征处理上具有优势。文章从数学原理到工程实现进行了全面对比,帮助读者根据业务场景选择合适算法,并为模型调参和问题排查提供理论依据。
2026-01-05 09:37:34
674
原创 MCP 入门指南:让 AI 连接真实世界
MCP 入门指南:让 AI 连接真实世界 MCP(Model Context Protocol)是 Anthropic 开源的协议标准,旨在解决大语言模型与外部系统交互的标准化问题。本文介绍了 MCP 的核心概念和实现方法: 核心架构:采用 Host-Client-Server 三层结构,通过 JSON-RPC 2.0 通信 三种能力: Tools:AI主动调用的功能(如执行命令、查询数据) Resources:只读数据源(如配置文件、数据库) Prompts:可复用的提示词模板 快速实现: TypeScr
2026-01-04 08:51:36
987
原创 大明王朝:开局一个碗(Pygame搭建2D游戏)
《大明王朝:开局一个碗》是一款基于Pygame开发的2D俯视角RPG游戏Demo,采用数据驱动设计实现地图系统、角色动画、战斗交互和剧情系统。项目通过文本地图+JSON配置构建可扩展的地图模块,使用精灵表实现角色动画,并设计了砍树掉落、野怪战斗和剧情触发三大核心玩法。游戏采用状态机管理交互流程,包含HUD界面显示角色状态、装备属性和场景进度。所有游戏内容(装备、怪物、剧情等)均通过外部JSON文件配置,实现代码逻辑与游戏内容的分离,便于快速迭代。该项目展示了如何用Pygame构建一个模块化、可扩展的2D游戏
2026-01-01 06:15:00
809
原创 2025年度技术创作回顾 | 从深度学习到云原生的探索之旅
时光荏苒,2025年即将画上句号。作为一名技术博主,这一年我在CSDN平台上持续输出,从深度学习到云原生,从Python到Rust,每一篇文章都是我技术成长的印记。回首这一年的创作历程,既有深夜调试代码的焦虑,也有攻克难题后的欣喜。本文将对我2025年的技术写作进行一次全面的回顾与总结。
2025-12-31 06:45:00
661
原创 Claude Code Skills 技能配置完全指南
本文详细介绍了为Claude Code配置自定义Skills的方法,包含三个实用技能配置指南:1)博客写作技能规范技术文章写作流程;2)代码审查技能标准化Code Review流程;3)Git提交技能统一中文Commit格式。通过创建.claude/skills/目录并添加Markdown格式的技能文件,可使Claude在特定场景下自动遵循预设规范,提升开发效率。文章还提供了技能命名、触发条件设计等最佳实践建议。
2025-12-31 05:45:00
2469
原创 XGBoost 进阶指南:从工程优化到模型解释性
本文介绍了XGBoost的高阶应用技巧,涵盖自定义损失函数、模型可解释性、业务约束和自动化调参四个方面。通过非对称误差函数示例展示了如何定制目标函数,利用SHAP工具解释模型决策逻辑,使用单调性约束确保业务合理性,并采用Optuna实现智能超参数优化。文章还解析了XGBoost的工程优化原理,包括分位数草图、稀疏感知和缓存优化等关键技术。这些方法能帮助数据科学家将XGBoost从基础应用到业务深度结合,提升模型性能和可解释性。
2025-12-30 06:00:00
729
原创 深入理解 XGBoost:原理、优势与实战指南
XGBoost(极致梯度提升)是机器学习领域的高效梯度提升决策树实现,在Kaggle竞赛和工业应用中表现卓越。本文介绍了XGBoost的核心原理,包括正则化改进和二阶泰勒展开优化,使其相比传统GBDT具有更快收敛速度和更好泛化能力。文章还详细讲解了XGBoost的工程优势,如并行处理、缺失值自动处理和加权分位数草图算法。通过鸢尾花分类任务的Python代码示例,展示了XGBoost的基本使用方法,并提供了关键参数调优指南。尽管面临LightGBM等新算法的竞争,XGBoost仍凭借稳定性能和广泛支持保持着重
2025-12-29 17:53:23
1470
原创 从 BERT 到 RoPE:NLP 模型长文本处理的进化之路
本文梳理了NLP模型长文本处理的技术演进路径。从BERT的512长度限制开始,分析了其O(n²)复杂度瓶颈。为解决这一问题,Longformer和BigBird采用稀疏注意力机制,通过滑动窗口、全局注意力和随机连接降低计算复杂度。随后重点介绍了RoPE(旋转位置编码)这一突破性技术,它利用复数旋转运算实现相对位置编码,解决了传统方法外推性差的问题,并详细阐述了其数学原理和PyTorch实现。这些技术共同推动了NLP模型处理长文本能力的不断提升。
2025-12-23 06:15:00
603
原创 从 BERT 到 Longformer/BigBird/RoPE:长文本建模的原理、选型与落地
本文探讨了长文本建模的技术路线选择,比较了BERT、Longformer、BigBird和RoPE体系模型的优缺点。BERT因512 tokens限制需滑窗切片处理长文本,Longformer和BigBird通过稀疏注意力降低计算复杂度,而RoPE模型具有更强的长上下文能力但部署成本较高。文章建议根据任务需求选择方案:短文本用BERT,结构线性文档用Longformer,跨段依赖任务用BigBird,复杂分析任务考虑RoPE模型,并提供了工程落地的实用建议。
2025-12-22 12:03:18
684
原创 从零看懂 U-Net:这一统医学图像分割江湖的“U”型架构
U-Net是一种革命性的医学图像分割架构,因其U型结构得名。它通过编码器提取高级语义特征,解码器恢复空间定位信息,并创新性地引入跳跃连接将编码器的细节特征与解码器的语义特征融合,完美解决了传统分割网络在精度和定位间的矛盾。文章详细解析了U-Net的核心结构,包括收缩路径、扩张路径和跳跃连接机制,并提供了PyTorch实现代码。此外还介绍了U-Net的重要变体:Res-UNet通过残差连接提升训练稳定性,U-Net++通过密集连接改善特征融合,Attention U-Net引入注意力机制过滤噪声,nnU-Ne
2025-12-20 06:30:00
768
原创 从GAN到WGAN-GP:生成对抗网络的进化之路与实战详解
生成对抗网络的演进与WGAN-GP实现 本文系统梳理了GAN技术的演进历程,从原始GAN到WGAN再到WGAN-GP的改进过程。原始GAN存在训练不稳定、模式崩塌等问题,WGAN通过引入Wasserstein距离解决了梯度消失问题,而WGAN-GP进一步用梯度惩罚取代权重剪枝,使模型训练更加稳定。文章详细分析了各代GAN的数学原理和优缺点,并提供了WGAN-GP的核心PyTorch实现代码,包括梯度惩罚计算函数和训练循环示例。这些改进使生成对抗网络在图像生成等任务中表现出更稳定的训练过程和更好的生成效果。
2025-12-18 07:00:17
703
原创 WGAN-GP 在 CPU 上训练插画的启示
本文介绍了使用WGAN-GP在CPU上训练游戏插画生成器的原理与实现。首先分析了经典GAN存在的问题,如梯度消失和模式坍塌,然后详细阐述了WGAN通过Wasserstein-1距离改进训练稳定性的理论,以及WGAN-GP通过梯度惩罚(Gradient Penalty)实现1-Lipschitz约束的方法。文章重点解读了项目中的网络结构(Generator和Critic)、数据处理流程和训练循环实现,展示了如何将理论转化为可运行的代码。针对小数据集、多风格和CPU训练场景,提供了实用的调参策略和工程实现细节,
2025-12-17 07:15:00
664
原创 Ray 分布式训练的多智能体路径规划强化学习踩坑记录
本文基于本仓库代码(等),介绍如何用训练一个带的去中心化多智能体路径规划(MAPF)策略,并总结工程实现中的关键点与常见问题。MAPF多智能体强化学习DQNRay分布式训练通信注意力PyTorchdtype/AMP。
2025-12-15 19:41:16
605
原创 基于PyTorch实现U-Net的路面裂缝检测系统
摘要 本文提出了一种基于PyTorch框架的U-Net路面裂缝检测系统。系统采用标准U-Net架构,通过编码器-解码器结构和跳跃连接实现高精度图像分割。项目完整实现了数据加载、模型训练、验证评估和结果可视化流程,在Crack500数据集上取得了良好效果。实验结果表明,该系统能够有效识别路面裂缝,为道路维护提供自动化检测方案。系统采用模块化设计,包含模型定义、数据处理、训练控制和评估工具四大核心模块,具有较好的可扩展性和实用性。 关键词:U-Net、路面裂缝检测、PyTorch、图像分割、深度学习
2025-12-15 10:12:17
1006
原创 用 Three.js + MediaPipe 打造《奇异博士》般的 3D 手势粒子系统
3D手势粒子交互系统 这是一个结合Three.js和MediaPipe技术的浏览器交互项目,实现以下功能: 实时渲染20,000个粒子组成的3D模型(爱心、土星、佛像等) 通过摄像头捕捉手势,捏合手指控制粒子凝聚,张开手掌使粒子扩散 采用Three.js的Points和BufferGeometry高效渲染粒子系统 使用MediaPipe Hand Landmarker精准识别手部21个关键点 通过数学公式生成3D形状坐标,避免加载复杂模型 采用Canvas动态生成粒子纹理,实现发光效果 优化性能:几何体复用
2025-12-13 07:15:00
1137
原创 UNet 深度解析:从原理到实践的图像分割之旅
UNet及其变体深度解析:医学图像分割的核心架构 本文系统剖析了UNet网络及其重要改进版本。作为医学图像分割的里程碑式架构,UNet通过U形对称结构结合跳跃连接,实现了高效的特征提取与空间信息恢复。文章详细解读了基础UNet的原理,包括编码器-解码器结构和特征融合机制,并深入分析了三大核心变体:UNet++通过嵌套密集连接优化特征融合,Attention UNet引入注意力机制实现自适应特征聚焦,3D UNet扩展至体积数据处理。每个架构都从设计思想、数学原理到代码实现进行多维度解析,最后通过实验对比各模
2025-12-12 09:00:00
827
原创 UNet 汽车图像分割动画解说
UNet汽车图像分割动画演示了该网络如何精确分割汽车图像。过程分为编码器提取特征(逐步下采样至64×64的瓶颈层)、解码器恢复分辨率(结合跳跃连接传递的细节信息),最后通过1×1卷积生成二值掩码。UNet的核心创新在于跳跃连接机制,使解码器能同时利用高级语义信息和低层空间细节,实现像素级精确分割。这种架构特别适合需要精确定位的图像分割任务,在医学影像、自动驾驶等领域有广泛应用。整个处理过程将1024×1024的RGB图像转化为精确的汽车轮廓掩码。
2025-12-10 07:15:00
433
原创 深度学习图像分割实战:从原理到代码实现
深度学习图像分割实战:从原理到代码实现 本文详细介绍了使用DeepLabV3模型实现汽车图像分割的全过程。首先解释了图像分割的三种类型(语义分割、实例分割、全景分割)及其区别。然后重点分析了DeepLabV3模型的架构特点,包括其核心的空洞卷积技术和ASPP模块的多尺度处理能力。通过实际案例展示了从输入图像到分割掩码的完整处理流程,包括模型加载、图像预处理、推理执行和掩码提取等关键步骤。文章还提供了详细的代码实现,涵盖了PyTorch模型加载、图像标准化处理、推理运算优化以及结果可视化等关键技术点,为读者提
2025-12-10 07:00:00
715
原创 以动画形式解读双向LSTM算法
摘要:本文通过动画形式生动解析了双向LSTM(Bidirectional LSTM)的工作原理。双向LSTM通过同时处理前向和后向两个方向的序列信息,克服了单向LSTM只能利用历史数据的局限。动画展示了输入序列如何被分解为两个并行处理流:蓝色前向层(从左到右)和橙色后向层(从右到左),最终将两个方向的隐藏状态拼接形成完整上下文表示。这种架构使模型能同时获取过去和未来信息,显著提升了序列建模能力,输出维度也因此翻倍。双向LSTM特别适用于需要完整上下文理解的任务,如命名实体识别等自然语言处理应用。
2025-12-09 05:45:00
1334
原创 高压电力电缆局部放电监测与诊断技术深度研究报告:物理机制、检测方法与工程应用
高压电力电缆局部放电监测与诊断技术研究 本文系统研究了高压电力电缆局部放电(PD)的监测与诊断技术。首先阐述了PD的定义和核心概念,分析了其作为绝缘劣化重要征兆的工程意义。随后详细探讨了四种主要PD类型的物理机制:介质内部放电、表面放电、电晕放电和电树枝化,并介绍了它们在PRPD图谱上的特征表现。报告深入研究了PD信号在电缆中的传播特性,包括双向传播、衰减、色散和反射等现象。最后对比分析了四种主流检测技术(HFCT、TEV、UHF和声学检测)的工作原理、频段特性和工程应用场景,为电力电缆状态监测提供了全面的
2025-12-08 16:37:21
1048
原创 U-Net 图像分割算法:从零开始的完全指南
这篇文章全面介绍了U-Net图像分割算法,主要包括以下内容:U-Net是一种专为图像分割设计的U型结构卷积神经网络,由编码器、解码器和跳跃连接组成。编码器通过下采样提取特征,解码器通过上采样恢复细节,跳跃连接则保留空间信息。该算法最初用于医学图像分割,能以少量训练数据实现像素级精确分割。文章详细解析了U-Net的架构设计、核心概念(如感受野、特征图通道变化)和关键操作(卷积、池化、上采样),并解释了其创新点——跳跃连接如何解决细节丢失问题。最后还提供了代码实现示例和应用场景。
2025-12-08 16:02:00
977
原创 以动画形式解读LSTM算法
本文通过动画演示直观解析LSTM(长短期记忆网络)的工作原理。LSTM通过门控机制有效解决RNN的梯度消失问题,包含遗忘门(决定丢弃信息)、输入门(决定存储信息)、候选状态(生成新信息)和输出门(决定输出内容)四个核心组件。关键创新在于细胞状态通道,通过加法而非乘法操作更新信息,使梯度能无损传播。文章详细拆解了数据流动过程,并提供了公式速查卡,帮助读者理解LSTM如何选择性记忆信息并建模长期依赖关系。
2025-12-07 20:28:14
1249
原创 深入浅出理解Transformer和BERT:从零开始的NLP革命
本文深入浅出地介绍了Transformer和BERT这两个NLP领域的革命性模型。首先分析了Transformer出现前RNN模型的局限性,然后详细解析了Transformer的核心自注意力机制、多头注意力、位置编码等关键技术。文章重点阐述了BERT的架构特点,包括双向编码、预训练任务(MLM和NSP)以及微调流程。通过对比传统模型和Transformer的差异,以及BERT的创新之处,帮助读者理解这些模型如何推动NLP技术发展。全文用通俗语言和直观示例,使复杂的AI概念变得易于理解。
2025-12-06 00:15:00
776
电力领域gis局部放电的PRPD图谱详解
2025-09-12
svm-project-适用x86-64架构的dockerfile文件与完整镜像文件.7z
2024-09-13
svm-fastapi-app.tar 一个名为 svm-fastapi-app.tar 的文件,包含了完整的 Docker
2024-09-12
9-11-docker-svm-fastapi.zip
2024-09-12
LabelImg是目标检测数据标注工具,可以标注两种格式: VOC标签格式和YOLO标签格式
2024-06-26
车辆检测的视频,视频来自YouTube,Los Angeles Freeway I-101 HD 30fps traffic
2024-06-20
基于OpencvDNN和ONNXRuntime部署YOLOv7(源码+训练模型+说明文档+数据)包含C++和Python两个版本
2024-06-14
高光谱数据集(.mat.csv)-科研学术
2024-05-29
movie-score-info.csv
2020-05-15
卷积神经网络-源代码.rar
2020-11-28
pip-script.zip
2020-06-01
最新Landmark人脸68个关键点检测dat模型库-数据亲测真实可用.zip
2020-04-07
Pillow-7.0.0-cp37-cp37m-win_适用于windows64和32位操作系统
2020-04-07
ml-latest.zip
2020-05-06
python-遗传算法求四元函数极值.zip
2020-06-13
yolov5m.pt与yolo5s.pt预训练模型.zip
2021-08-12
cifar10数据集.rar
2020-05-05
python遗传算法旅行商代码.zip
2020-06-22
遗传算法实现TSP的完整代码.zip
2020-05-05
opencv_python-3.4.7.28-cp37-cp37m-win_amd64.whl
2020-04-26
冠状病毒确诊数据.zip
2020-04-07
手写体识别数据集-mnist.rar
2020-05-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅