Transformer数学推导——Q54 分析残差连接对模型鲁棒性的影响(基于梯度噪声注入实验)

该问题归类到Transformer架构问题集——残差与归一化——残差连接。请参考LLM数学推导——Transformer架构问题集

1. 引言

在深度学习应用日益广泛的今天,模型鲁棒性已成为衡量其性能优劣的关键指标。鲁棒性强的模型能够在面对数据噪声、对抗样本以及分布外数据等复杂情况时,依然保持稳定且良好的性能表现。残差连接作为深度神经网络的重要结构创新,凭借缓解梯度消失、支持网络深度拓展等优势,在各类先进模型架构中广泛应用。然而,相较于其对模型训练效率和表达能力的研究,残差连接对模型鲁棒性的影响尚未得到全面深入的探讨。本研究基于梯度噪声注入实验,系统分析残差连接对模型鲁棒性的影响机制,旨在为优化模型结构、提升模型实际应用能力提供理论依据与实践指导。

2. 理论基础

2.1 残差连接原理

残差连接以 y = x + F(x) 的形式改变了传统神经网络的信息传递方式。在该结构中,x 为输入数据,F(x) 是子层对 x 的变换输出。其核心优势在于构建了一条梯度传播的 “捷径”。反向传播时,根据链式法则,损失函数 L 关于输入 x 的梯度 \frac{\partial L}{\partial x}=\frac{\partial L}{\partial y}(1 + \frac{\partial F(x)}{\partial x}) 。即便子层 F(x) 的梯度 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨顿

唵嘛呢叭咪吽

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值