C语言--数据在内存中的存储

目录

一、整数在内存的存储

 二、⼤⼩端字节序和字节序判断

1、什么是⼤⼩端?

2、为什么有⼤⼩端?

3、大小端判断 

三、浮点数在内存中的存储

 1.浮点数存的过程

 2.浮点数取的过程

E不全为0或不全为1

E全为0

E全为1


一、整数在内存的存储

 整数的2进制表示方法有三种,即原码、反码和补码

有符号的整数,三种表示方法均有符号位和数值位两部分 ,符号位都是用0表示’正‘,用1表示’负‘,最高位的一位被当做符号位,剩余的都是数值位。

正整数的原、反、补码都相同

负整数的三种方法各不相同

原码:直接将数值按照正负数的形式翻译成⼆进制得到的就是原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码:反码+1就得到补码。

对于整形来说:数据存放内存中其实存放的是补码。 

 为什么呢?

在计算机系统中,数值⼀律⽤补码来表⽰和存储。
原因在于,使⽤补码,可以将符号位和数值域统⼀处理;
同时,加法和减法也可以统⼀处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是
相同的,不需要额外的硬件电路。

 二、⼤⼩端字节序和字节序判断

 当我们了解了整数在内存中存储后,我们调试看⼀个细节:

 #include <stdio.h>
int main()
{
  int a = 0x11223344;

  return 0;
}
调试的时候,我们可以看到在a中的 0x11223344 这个数字是按照字节为单位,倒着存储的。这是为什么呢?

1、什么是⼤⼩端?

其实超过⼀个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分为⼤端字节序存储和⼩端字节序存储,下⾯是具体的概念:
⼤端(存储)模式:
是指数据的低位字节内容保存在内存的⾼地址处,⽽数据的⾼位字节内容,保存在内存的低地址处。

 ⼩端(存储)模式

是指数据的低位字节内容保存在内存的低地址处,⽽数据的⾼位字节内容,保存在内存的⾼地址处。 

2、为什么有⼤⼩端?

为什么会有⼤⼩端模式之分呢? 
这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着⼀个字节,⼀个字节为8bit 位,但是在C语⾔中除了8 bit 的 char 之外,还有16 bit 的 short 型,32 bit 的 long 型(要看
具体的编译器),另外,对于位数⼤于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度⼤于⼀个字节,那么必然存在着⼀个如何将多个字节安排的问题。因此就导致了⼤端存储模式和⼩端存储模式。

3、大小端判断 

 设计⼀个⼩程序来判断当前机器的字节序。

#include <stdio.h>
int check_sys()
{
 int i = 1;
 return (*(char *)&i);
}
int main()
{
 int ret = check_sys();
 if(ret == 1)
 {
 printf("⼩端\n");
 }
 else
 {
 printf("⼤端\n");
 }
 return 0;
}

三、浮点数在内存中的存储

 常⻅的浮点数:3.14159、1E10等,浮点数家族包括: floatdoublelong double 类型。

 

#include <stdio.h>
int main()
{
 int n = 9;
 float *pFloat = (float *)&n;
 printf("n的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 *pFloat = 9.0;
 printf("num的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 return 0;
}

 

上⾯的代码中, num *pFloat 在内存中明明是同⼀个数,为什么浮点数和整数的解读结果会差别这么⼤?
要理解这个结果,⼀定要搞懂浮点数在计算机内部的表⽰⽅法。
根据国际标准IEEE(电⽓和电⼦⼯程协会) 754,任意⼀个⼆进制浮点数V可以表⽰成下⾯的形式:
  •         (−1)^S 表⽰符号位,当S=0,V为正数;当S=1,V为负数
  •         M 表⽰有效数字,M是⼤于等于1,⼩于2的
  •         4^E 表⽰指数位
举例来说:
⼗进制的5.0,写成⼆进制是 101.0 ,相当于 1.01×2^2
那么,按照上⾯V的格式,可以得 出S=0,M=1.01,E=2。
⼗进制的-5.0,写成⼆进制是 -101.0 ,相当于 -1.01×2^2
那么,S=1,M=1.01,E=2。
IEEE 754规定:
对于 32位 的浮点数,最⾼的1位存储符号位 S ,接着的8位存储指数 E ,剩下的23位存储有效数字 M
对于 64位 的浮点数,最⾼的1位存储符号位 S ,接着的11位存储指数 E ,剩下的52位存储有效数字 M

 

 1.浮点数存的过程

 IEEE 754 对有效数字M和指数E,还有⼀些特别规定。

1 M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表⽰⼩数部分。
IEEE 754 规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的xxxxxx部分。⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。
⾄于指数E,情况就⽐较复杂
⾸先,E为⼀个⽆符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我 们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存⼊内存时E的真实值必须再加上 ⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。⽐如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

 2.浮点数取的过程

 

指数E从内存中取出还可以再分成三种情况:

E不全为0或不全为1

这时,浮点数就采⽤下⾯的规则表⽰,即指数E的 计算值减去127(或1023) ,得到真实值,再将有效数字M前加上第⼀位的1。
⽐如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将⼩数点右移1位,则为1.0*2^(-1),其阶码为-1+127(中间值)=126,表⽰为01111110,⽽尾数1.0去掉整数部分为0,补⻬0到23位 00000000000000000000000,则其⼆进制表⽰形式为:
0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数E等于 1-127(或者1-1023 )即为真实值,有效数字M不再加上第⼀位的1,⽽是还原为0.xxxxxx的⼩数。这样做是为了表⽰ ±0 ,以及 接近于0的很⼩的数字

 

0 00000000 00100000000000000000000

E全为1

这时,如果有效数字M全为0,表⽰ ±⽆穷⼤ (正负取决于符号位s);
0 11111111 00010000000000000000000

感谢观看,再见

  • 43
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 16
    评论
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pzn)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值