小A的彩票 动态规划

小A连续购买了n张彩票,每张彩票有1, 2, 3, 4元等可能的中奖金额。至少不亏本的概率可通过动态规划计算。当n=0时,概率为1/1;否则,利用dp[i][j]表示买第i张彩票,中j元的方案数,通过状态转移公式求解。" 123734351,9710186,focal loss详解与代码实现,"['深度学习', '计算机视觉', '损失函数', '目标检测算法', '模型优化']
摘要由CSDN通过智能技术生成

来源:小白月赛13:小A的彩票

题目描述:

小A最近开始沉迷买彩票,并且希望能够通过买彩票发家致富。已知购买一张彩票需要3元,而彩票中奖的金额分别为1,2,3,4元,并且比较独特的是这个彩票中奖的各种金额都是等可能的。现在小A连续购买了n张彩票,他希望你能够告诉他至少能够不亏本的概率是多少。

输入描述:

一行一个整数N,为小A购买的彩票数量。

输出描述:

输出一个最简分数a/b,表示小A不亏本的概率。若概率为1,则输出1/1,概率为0,则输出0/1。

用dp[i][j]表示买第i张彩票,中j元的方案数。那么
dp[i][j]=dp[i-1][j-1]+dp[i-1][j-2]+dp[i-1][j-3]+dp[i-1][j-4]
边界条件:
dp[1][1]=1;
dp[1][2]=1;
dp[1][3]=1;
dp[1][4]=1;
很明显,如果不买,保证不亏。
买了,肯定有可能亏。
因为只要买了,就有可能全中1元,亏了,也有可能全中4元,稳赚。
所以,只有n==0时,概率为1/1,概率为0/1的情况不存在。

#include<iostream>
#include<algorithm>
#include<cst
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值