来源:小白月赛13:小A的彩票
题目描述:
小A最近开始沉迷买彩票,并且希望能够通过买彩票发家致富。已知购买一张彩票需要3元,而彩票中奖的金额分别为1,2,3,4元,并且比较独特的是这个彩票中奖的各种金额都是等可能的。现在小A连续购买了n张彩票,他希望你能够告诉他至少能够不亏本的概率是多少。
输入描述:
一行一个整数N,为小A购买的彩票数量。
输出描述:
输出一个最简分数a/b,表示小A不亏本的概率。若概率为1,则输出1/1,概率为0,则输出0/1。
用dp[i][j]表示买第i张彩票,中j元的方案数。那么
dp[i][j]=dp[i-1][j-1]+dp[i-1][j-2]+dp[i-1][j-3]+dp[i-1][j-4]
边界条件:
dp[1][1]=1;
dp[1][2]=1;
dp[1][3]=1;
dp[1][4]=1;
很明显,如果不买,保证不亏。
买了,肯定有可能亏。
因为只要买了,就有可能全中1元,亏了,也有可能全中4元,稳赚。
所以,只有n==0时,概率为1/1,概率为0/1的情况不存在。
#include<iostream>
#include<algorithm>
#include<cst