nyoj _202: 红黑树
红黑树
时间限制:3000 ms | 内存限制:65535 KB
难度:3
描述
什么是红黑树呢?顾名思义,跟枣树类似,红黑树是一种叶子是黑色果子是红色的树。。。
当然,这个是我说的。。。
《算法导论》上可不是这么说的:
如果一个二叉查找树满足下面的红黑性质,那么则为一个红黑树。
1)每个节点或是红的,或者是黑的。
2)每个叶子节点(NIL)是黑色的
3)如果一个节点是红色的,那么他的两个儿子都是黑的。
4)根节点是黑色的。
5)对于每个节点,从该节点到子孙节点的所有路径上包含相同数目的黑色节点。
我们在整个过程中会用到这些性质,当然,为了公平起见,其实即使你不知道这些性质,这个题目也是可以完成的(为什么不早说。。。。)。在红黑树的各种操作中,其核心操作被称为旋转,那么什么是旋转呢,我们来看一个例子:
假设我们这里截取红黑树的一部分,放在左边,通过操作如果可以把他转化为右边的形式,那么我们就称将根为x的子树进行了左旋,反之我们称将根为Y的树进行了右旋:
恰好慢板同学把自己红黑树弄乱了,然后请你帮忙进行修复,他将向你描述他的红黑树(混乱的。。。)。然后告诉他需要用哪种方式旋转某个节点。在你完成工作之后,直接向大黄提交新的树的中序遍历结果就好了。
Hint:
在这里好心的慢板同学给你简单的解释下样例:
最开始的时候树的样子是这样的:
0
/ \
1 2
然后对于标号为0的节点进行右旋,结果将变为:
1
\
0
\
2
然后呢。。。
中序遍历?这个是什么东西,哪个人可以告诉我下。。。。
输入
输入分两部分:
第一部分:一个整数T(1<=T<=10),表示测试的组数。
第二部分:第一行是一个数字N,表示红黑树的节点个数。0<N<10
然后下面有N行,每行三个数字,每个数字的大小都在-1~N-1之间。第一个数字表示当前节点的标号,后面两个数字表示这个节点的左孩子和右孩子。如果是-1的话表示是空节点。对于所有的输入来说标号为0节点为根。
然后是一个数字M表示需要旋转的次数。M<100
接下来M行,每行有两个数字,分别表示你要旋转的节点标号和你需要的操作。标号的范围为0~n-1,如果标号后面的数字0,那么表示为左旋。如果是1,则表示右旋。
输出
每组测试返回N行数字,表示对树的中序遍历。在每组测试数据之后留一行空行。
样例输入
1
3
0 1 2
1 -1 -1
2 -1 -1
1
0 1
样例输出
1
0
2
按要求左旋和右旋就行
后来才反应过来红黑树进行左旋和右旋操作不影响中序遍历的结果,因为红黑树本身是一种二叉搜索树
NYOJ好像最近出故障了,代码还没交急死了,过几天再试着交…
//按照要求旋转的代码
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 10005;
int root = maxn;
/**
1
3
0 1 2
1 -1 -1
2 -1 -1
1
0 1
*/
struct nodeP{
int l;
int r;
int fa;
}p[maxn];
void init()
{
for(int i=0;i<maxn;++i)
{
p[i].l = -1;
p[i].r = -1;
p[i].fa = -1;
}
p[0].fa = root;
p[root].l = 0;
p[root].r = 0;
}
int rturn(int x) //右旋
{
int root_1 = p[x].fa;
int y = p[x].l;
if(p[p[x].fa].l == x) //x是左儿子
{
p[p[x].fa].l = p[x].l;
if(p[x].fa == maxn)
{
p[p[x].fa].r = p[p[x].fa].l = p[x].l;
}
}else if(p[p[x].fa].r == x) //x是右儿子
{
p[p[x].fa].r = p[x].l;
if(p[x].fa == maxn)
{
p[p[x].fa].r = p[p[x].fa].l = p[x].l;
}
}
p[p[x].l].fa = p[x].fa;
p[x].l = p[y].r;
p[p[y].r].fa = x;
p[x].fa = y;
p[y].r = x;
return 0;
}
int lturn(int x) //左旋
{
int y = p[x].r;
if(p[p[x].fa].l == x) {
p[p[x].fa].l = p[x].r;
if(p[x].fa==maxn)
{
p[p[x].fa].r = p[p[x].fa].l = p[x].r;
}
}else if(p[p[x].fa].r == x){
p[p[x].fa].r = p[x].r;
if(p[x].fa==maxn)
{
p[p[x].fa].r = p[p[x].fa].l = p[x].r;
}
}
p[p[x].r].fa = p[x].fa;
p[x].r = p[y].l;
p[p[y].l].fa = x;
p[x].fa = y;
p[y].l = x;
return 0;
}
void dfs(int node)
{
if(node==-1)
{
return ;
}
dfs(p[node].l);
cout<<node<<endl;
dfs(p[node].r);
}
int main()
{
int T;
cin>>T;
while(T--)
{
int n;
cin>>n;
int a,l,r;
init();
for(int i=0;i<n;++i)
{
cin>>a>>l>>r;
p[a].l = l;
p[a].r = r;
p[l].fa = a;
p[r].fa = a;
}
int t,x,y;
cin>>t;
for(int i=0;i<t;++i)
{
cin>>x>>y; //对节点x进行旋转
if(y==0) //左旋
{
lturn(x);
}else if(y==1) //右旋
{
rturn(x);
}
}
// int ans = p[root].l;
// cout<<"root 的左右孩子"<<p[root].l<<" "<<p[root].r<<endl;
// for(int i=0;i<10;++i)
// {
// cout<<i<<" "<<p[i].fa<<" "<<p[i].l<<" "<<p[i].r<<endl;
// }
dfs(p[root].l);
}
return 0;
}
//直接中序遍历
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 10005;
struct nodeP{
int l;
int r;
int fa;
}p[maxn];
void init()
{
for(int i=0;i<maxn;++i)
{
p[i].l = -1;
p[i].r = -1;
p[i].fa = -1;
}
}
void dfs(int node)
{
if(node==-1)
{
return ;
}
dfs(p[node].l);
cout<<node<<endl;
dfs(p[node].r);
}
int main()
{
int T;
cin>>T;
while(T--)
{
int n;
cin>>n;
int a,l,r;
init();
for(int i=0;i<n;++i)
{
cin>>a>>l>>r;
p[a].l = l;
p[a].r = r;
p[l].fa = a;
p[r].fa = a;
}
int t,x,y;
cin>>t;
for(int i=0;i<t;++i)
{
cin>>x>>y;
}
dfs(0);
}
return 0;
}