基于MATLAB的人脸识别提纲

该文详细探讨了人脸识别技术,从国内外研究现状、存在的挑战到PCA(主成分分析)在人脸特征提取和重建中的运用。通过PCA算法,实现了人脸的特征选择和模板匹配,进而进行人脸识别。在matlab环境下进行了仿真和调试,分析了人脸库生成、特征提取、人脸重建及识别的过程。
摘要由CSDN通过智能技术生成

目 录

  1. 绪论 1
    1.1 人脸识别的背景和意义
    1.2 人脸识别的国内外研究现状
    1.2.1 国外研究现状
    1.2.2 国内研究现状
    1.3 人脸识别存在的难题
  2. 基于PCA算法的人脸特征提取以及人脸重建
    2.1 K-L变换的基本原理
    2.2 PCA的基本原理
    2.3 基于PCA的特征提取
    2.4 人脸重建
    3.人脸识别的分类准则
    3.1 相似性测度
    3.2 分类器
    4.基于PCA和欧式距离的分类器的人脸识别
    4.1 matlab软件介绍
    4.2系统框架
    4.3 程序仿真及调试结果
    4.3.1人脸库的生成
    4.3.2部分人脸训练图
    4.3.3特征提取和人脸重建的仿真分析
    4.3.4 模板匹配及识别的仿真分析
  3. 总结与展望
    5.1总结
    5.2展望
    参考文献
    致谢
    附录程序代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值