我们浦之星女子学院的篮球场是一个R行C列的矩阵,其中堆满了各种学校的杂物 (用"#“表示),空地 (用”."表示) 好像并不多的样子呢……
我们Aqours现在已经一共有K个队员了,要歌唱舞蹈起来的话,我们得排成一条1*K的直线,一个接一个地站在篮球场的空地上呢 (横竖均可)。
我们想知道一共有多少种可行的站位方式呢。
Aqours的真正的粉丝的你,能帮我们算算吗?
输入格式
第一行三个整数 R, C, K。
接下来的R行C列,是浦之星女子学院篮球场。
输出格式
总共的站位方式数量。
输入输出样例
输入 #1复制
5 5 2
.###.
##.#.
…#…
#…#.
#.###
输出
8
思路:搜索行的可行数和列的可行数,然后把所有的可行数相加,依然是枚举算法。
#include <iostream>
using namespace std;
#include <algorithm>
#include <string>
#include <stdlib.h>
#include <iomanip>
char a[100][100];
int R,C,K,count1=0; //count1表示方案数
int main()
{
cin>>R>>C>>K;
int i,j,k,flag;
for(i=0;i<R;i++)
for(j=0;j<C;j++)
cin>>a[i][j];
for(i=0;i<R;i++) //横着搜索
for(j=0;j<C-K+1;j++) //从a[0][0]开始枚举
{ flag=1;
for(k=0;k<K;k++) //表示所需排的人数
if(a[i][j+k]!='.') //如果接下来k个其中一个没有空地 则标记为0
{flag=0;break;
}
if(flag) //如果标记为1 证明找到一种方案
count1++;
}
for(i=0;i<C;i++) //纵着搜索
for(j=0;j<R-K+1;j++)
{ flag=1;
for(k=0;k<K;k++)
if(a[j+k][i]!='.')
{flag=0;break;
}
if(flag)
count1++;
}
if(K==1)
cout<<count1/2;
else
cout<<count1;
return 0;
}