7-6 一步两步

该博客讨论了如何使用动态规划策略解决一种经典问题——过河石头计数。当没有桥时,需要通过跨一个或两个石头的方式到达第n个石头。作者展示了如何从简单的暴力搜索方法过渡到更高效的动态规划解决方案,给出了代码实现,并提供了几个样例输入和输出,以展示算法的正确性和效率。动态规划的思路在于找到递推公式,即a[i]=a[i-1]+a[i-2],并利用这个公式计算出任意n个石头的走法数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

你要过河,但是没有桥,只有由一排石头堆成的石头路,你一次只能跨一个石头或者两个石头,求你到第n个石头有多少种走法。
输入格式:

正整数n
输出格式:

可能性的个数
输入样例1:

在这里给出一组输入。例如:

1

输出样例1:

在这里给出相应的输出。例如:

1

输入样例2:

在这里给出一组输入。例如:

2

输出样例2:

在这里给出相应的输出。例如:

2

输入样例1:

在这里给出一组输入。例如:

8

输出样例1:

在这里给出相应的输出。例如:

34
思路:这里我们很容易想到暴力搜索的思路,但是如果数据量大了之后就会超时了,因此采用动态规划的思想。我们可以从中发现规律:
石头个数 所需步数
1 1
2 2
3 3
4 5
5 8
6 13

我们可以发现在n的个数大于3后,第i个的答案=前一个的答案加上前前一个答案
即a[i]=a[i-2]+a[i-1]
因此我们可以推出之后的答案

#include <iostream>
#include <algorithm>
#include <stdio.h> 
#include <string>
using namespace std;
int  a[100000],n; 
int main()
{ 
  int i;
  for(i=1;i<=3;i++)
   a[i]=i;  
   cin>>n;
  for(i=4;i<=n;i++)
   a[i]=a[i-1]+a[i-2];
  printf("%d",a[n]);
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乔梦圆的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值