7-5 矩阵的最小路径和

给定一个矩阵matrix,从左上角开始每次只能向右或者向下走,最后到达右下角的位置,路径上所有的数字累加起来就是路径和,返回所有的路径中最小的路径和。
输入格式:

第一行为两个数字m和n(1≤m, n≤1000),分别表示矩阵的行数和列数。

接下来有m行,每行n个数字,数字之间用一个空格分隔。每个数字的值为不超过200的非负整数。
输出格式:

在一行中输出从左上角到右下角所有的路径中最小的路径和。
输入样例:

4 4
1 3 5 9
8 1 3 4
5 0 6 1
8 8 4 0

输出样例:

12

样例解释:

路径1,3,1,0,6,1,0是所有路径和最小的,所以返回12。
思路:暴力递归搜索必定超时,因此我们采用动态规划的思想。我们可以构建一个辅助数组b来帮助我们存储从左上角到当前点的最短路状态。
例如,
b[1][1]存储从左上角到第一行第1列的最短路,毫无疑问就是8.
b[1][2]存储从左上角到第一行第2列的最短路,因为只能向右或者向下因此,b[1][2]=b[1][1]+a[1][2].
b[1][j] j=2,3,4…是前一个数加上当前的a[1][j],因为最上面的一行没有从上面来的路,只有从左边来的路,因此不用判断当前的最小路,最小路径就是a[1][j]加上左边的数即可。
最左边的一列也是同理:
b[i][1] i=2,3,4是上一个数加上当前的a[i][1].因为没有从左边来的路,只有从上边来的路。
当终点位置不在最左边一列或者最上边一行怎么办呢?
比如说b[2][2]怎么求
因为每一步都与之前的路有关,而走的路径只能向下或者向右,因此我们需要判断从上面来的路径和从左边来的路径到当前点的最小路,然后加上当前点上的数值即可。
例如:b[2][2]=a[2][2]+min(b[2-1][2],b[2][2-1])
同理:b[i][j]=a[i][j]+min(b[i-1][j],b[i][j-1]) (i,j>=2)
当我们列出动态方程之后便可以看代码了

#include <iostream>
#include <algorithm>
#include <string>
#include <stdio.h> 
using namespace std;
int a[1001][1001],b[1001][1001],m,n; 
int main()
{ 
  cin>>m>>n;
  int i,j;
  for(i=1;i<=m;i++)
   for(j=1;j<=n;j++)
     cin>>a[i][j];   //输入用a数组存储 
   for(i=1;i<=m;i++) //辅助数组b第一行 
       b[i][1]=b[i-1][1]+a[i][1];
   for(i=2;i<=n;i++)//辅助数组b第一列 
       b[1][i]=b[1][i-1]+a[1][i];
   for(i=2;i<=m;i++)
    for(j=2;j<=n;j++)
     {   //求出不在第一行和第一列的情况 
     	b[i][j]=a[i][j]+min(b[i][j-1],b[i-1][j]);
	 }
	 printf("%d",b[m][n]);
	 return 0;
}
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页