题目描述
nn 个小伙伴(编号从 0 0到 n-1n−1)围坐一圈玩游戏。按照顺时针方向给 n n个位置编号,从00 到 n-1n−1。最初,第 0 0号小伙伴在第 00号位置,第 1 1号小伙伴在第 11 号位置,……,依此类推。游戏规则如下:每一轮第 00 号位置上的小伙伴顺时针走到第 mm 号位置,第 1 1号位置小伙伴走到第 m+1m+1 号位置,……,依此类推,第n − m号位置上的小伙伴走到第 0 号位置,第n \sim m+1n∼m+1 号位置上的小伙伴走到第 11 号位置,……,第 n-1n−1 号位置上的小伙伴顺时针走到第m-1m−1 号位置。
现在,一共进行了 10^k10 k轮,请问 xx 号小伙伴最后走到了第几号位置。
输入输出格式
输入格式:
共 1 1行,包含 44 个整数 n,m,k,xn,m,k,x,每两个整数之间用一个空格隔开。
输出格式:
1 1个整数,表示 10^k10
k
轮后 xx 号小伙伴所在的位置编号。
输入输出样例
输入样例#1:
10 3 4 5
输出样例#1:
5
方法化简公式就行了,再加一个快速幂
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
#define LL long long
LL n,m,k,x;
LL Pow(LL a,LL b,LL p){
LL ans = 1%p;
while(b){
if(b & 1) ans = ans*a%p;
a = a*a%p;
b >>= 1;
}
return ans;
}
void Solve(){
LL ans = (x+m*Pow(10,k,n))%n;
printf("%lld",ans);
return;
}
int main()
{
// freopen("circle.in","r",stdin);
// freopen("circle.out","w",stdout);
scanf("%lld%lld%lld%lld",&n,&m,&k,&x);
Solve();
return 0;
}