并查集与最小生成树 —— Leetcode 1584. 连接所有点的最小费用

题目如下:

给你一个points 数组,表示 2D 平面上的一些点,其中 points[i] = [xi, yi] 。

连接点 [xi, yi] 和点 [xj, yj] 的费用为它们之间的 曼哈顿距离 :|xi - xj| + |yi - yj| ,其中 |val| 表示 val 的绝对值。

请你返回将所有点连接的最小总费用。只有任意两点之间 有且仅有 一条简单路径时,才认为所有点都已连接。

思路:

1.首先快速构建一下图结构:记结构体edge内含m,n,w三个整数,其中m,n为点序号,w为以m,n两点构成的边的权重(即曼哈顿距离),顺便把求解曼哈顿距离的函数写了:

    struct edge{
        int m,n,w;
        edge(int iptm,int iptn,int iptw){
            m=iptm;n=iptn;w=iptw;
        }
    };
    int Manhattan(vector<int> A,vector<int> B){
        return (abs(A[0]-B[0])+abs(A[1]-B[1]));
    }

2.构建并查集:设置一个哈希映射全局变量,并利用路径压缩实现查找父亲操作:

    unordered_map<int,int> fa;    
    int find(int x){
        if(x==fa[x]){
            return x;
        }
        else{
            fa[x]=find(fa[x]);
            return fa[x];
        }
    }

3.构建最小生成树算法:这里选用Kruskal算法:先将边按权重w从小到大排序,然后依次选取:如果选取的边的m,n两点父亲不同,则选中这条边,并将点m的父亲设置为点n的父亲实现合并操作,确保了不形成环。图解:

        for(int i=0;i<edges.size();i++){
            if(find(edges[i].m)!=find(edges[i].n)){
                fa[find(edges[i].m)] = find(fa[edges[i].n]); 
                minCost = minCost + edges[i].w;
            }
        }

完整代码如下:

class Solution {
public:
    struct edge{
        int m,n,w;
        edge(int iptm,int iptn,int iptw){
            m=iptm;n=iptn;w=iptw;
        }
    };
    unordered_map<int,int> fa;
    int minCost=0;
    int find(int x){
        if(x==fa[x]){
            return x;
        }
        else{
            fa[x]=find(fa[x]);
            return fa[x];
        }
    }
    int Manhattan(vector<int> A,vector<int> B){
        return (abs(A[0]-B[0])+abs(A[1]-B[1]));
    }
    int minCostConnectPoints(vector<vector<int>>& points) {
        int total = points.size();
        vector<edge> edges;
        int index=0;
        for(int i=0;i<total;i++){
            for(int j=i+1;j<total;j++){
                edges.push_back(edge(i,j,Manhattan(points[i],points[j])));
            }
        }
        sort(edges.begin(),edges.end(),[](edge a,edge b)
        {return a.w < b.w;}
        );
        for(int i=0;i<total;i++){
            fa[i]=i;
        }
        for(int i=0;i<edges.size();i++){
            if(find(edges[i].m)!=find(edges[i].n)){
                fa[find(edges[i].m)] = find(fa[edges[i].n]); 
                minCost = minCost + edges[i].w;
            }
        }
        return minCost;
    }
};

感谢你能看到这里。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值