最小生成树:Leetcode1135.最低成本联通所有城市

本文介绍了最小生成树的概念,特别是在构建通信网络中的应用。通过经典的Leetcode1135题,讲解了如何用克鲁斯卡尔算法在成本最低的情况下连通所有城市。算法核心在于按权重排序边并确保添加过程中不形成环,最终得到一棵连接所有顶点的最小生成树。
摘要由CSDN通过智能技术生成

题目:

如题,经典的最小生成树解法:

1、什么是最小生成树

现在假设有一个很实际的问题:我们要在n个城市中建立一个通信网络,则连通这n个城市需要布置n-1一条通信线路,这个时候我们需要考虑如何在成本最低的情况下建立这个通信网?
于是我们就可以引入连通图来解决我们遇到的问题,n个城市就是图上的n个顶点,然后,边表示两个城市的通信线路,每条边上的权重就是我们搭建这条线路所需要的成本,所以现在我们有n个顶点的连通网可以建立不同的生成树,每一颗生成树都可以作为一个通信网,当我们构造这个连通网所花的成本最小时,搭建该连通网的生成树,就称为最小生成树。

构造最小生成树有很多算法,但是他们都是利用了最小生成树的同一种性质:MST性质(假设N=(V,{E})是一个连通网,U是顶点集V的一个非空子集,如果(u,v)是一条具有最小权值的边,其中u属于U,v属于V-U,则必定存在一颗包含边(u,v)的最小生成树),下面就介绍两种使用MST性质生成最小生成树的算法:普里姆算法和克鲁斯卡尔算法。

2、构建树:克鲁斯卡算法

算法思路:
(1)将图中的所有边都去掉。
(2)将边按权值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值