💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
风电光伏混合储能是一种能够有效解决可再生能源波动性的技术,它通过对风电和光伏发电进行功率小波包分解和平抑前后波动性分析,实现了对能源波动的有效控制。具体实现步骤如下:
首先,我们需要进行傅立叶变换,将原始的风电和光伏发电数据转换成频域数据,为后续的小波包分解做准备。
接下来,我们执行小波包分解,将频域数据进行分解,得到不同尺度的小波包系数。通过对这些小波包系数进行叠加计算,我们可以获得电池的参考功率。
然后,我们进行平抑前后波动性分析,对比分析风电光伏混合储能前后的功率波动情况。通过这个分析,我们可以评估储能系统对波动性的平抑效果。
在储能功率需求方面,正值表示需要进行电池放电,负值表示需要进行电池充电。通过对储能功率的需求进行计算,我们可以确定电池的容量需求。
容量需求计算时,我们假设初始容量为0,根据储能功率需求的大小,计算出容量需求。这个容量需求可以作为储能系统设计的依据。
最后,根据高斯分布置信度配置的原则,我们可以进行容量的配置。一般可以参考3σ准则,即以平均值加减3倍标准差的范围内,配置合适的容量。
通过以上步骤,我们可以实现对风电光伏混合储能系统的功率波动分析、容量配置和频谱分析。这样的分析和配置能够有效提高储能系统的运行稳定性和可靠性,进一步促进可再生能源的利用和发展。
风电光伏混合储能系统研究
一、小波包分解在储能功率分析中的应用方法
小波包分解技术通过多尺度信号分解,将风电/光伏功率波动分解为不同频段分量,为混合储能功率分配提供依据。
- 自适应分解层数优化
根据国家标准(如GB/T 19963)对低频功率波动ΔP的限值要求,动态调整分解层数。当ΔP满足并网要求时停止分解,否则增加层数直至达标。 - 分频点选择与功率分配
- 低频分量直接并网,高频分量由储能系统平抑。
- 分界点(如高频段数k)通过经济性优化确定:比较不同分界点下储能系统的综合成本(包括功率型与能量型储能的成本权重),选择成本最低的方案。
- 混合储能协调控制
- 蓄电池承担低频分量(如0.01 Hz以下),超级电容处理高频分量(如1 Hz以上),中频段(0.01-1 Hz)由两者协同处理。
- 引入“N+1”备用系统吸收分界层功率,减少蓄电池充放电次数,延长寿命。
二、平抑前后波动性分析指标与对比方法
- 核心评估指标
- 归一化SOC平衡指标:反映储能系统荷电状态的稳定性。
- 功率饱和指标:衡量储能当前功率调整余量。
- 波动率:计算1分钟和10分钟时间尺度内的功率变化率,对比国家标准限值(如±10%装机容量/分钟)。
- 越限概率及次数:统计超出国标允许波动范围的频率。
- 对比方法
- 仿真验证:通过Matlab/Simulink模拟原始功率与平抑后并网功率曲线,分析波动率下降幅度(如从14.14 MW降至5 MW)。
- 充放电裕度分析:计算储能系统的平均充放电裕度,评估其对波动吸收的实时能力。
案例:某32 MW风电场采用混合储能后,1分钟波动率从1.52%降至0.8%,充放电次数减少89%。
三、容量配置关键参数与优化策略
- 关键参数
- 功率-能量比:超级电容侧重功率密度(如6 MW/0.6 MWh),电池侧重能量密度(6 MW/15 MWh)。
- 置信水平:基于高斯分布3σ原则配置容量,覆盖99.7%的功率需求。
- 经济性指标:全生命周期成本(含初始投资、运维、更换成本)。
- 优化策略
- 多目标优化模型:以成本最低、波动平抑效果最优为目标,采用混沌粒子群算法求解。
- 风光互补特性:风电占比55-65%、光伏35-45%时,储能需求最低(约负荷需求的31-32%)。
- 动态调整:根据负荷曲线和风光出力特性变化,实时优化储能出力比例。
案例:某23 MW风光储系统中,储能容量配置为6.8 MWh,总投资最低点对应风电1550.68 kW+光伏1666.53 kW。
四、频谱分析技术手段与实施流程
- 技术手段
- 傅里叶变换:将功率信号转换为频域,分析主要波动频率分布。
- 小波包分解:划分频段(如低频0.01 Hz、中频0.01-1 Hz、高频1 Hz以上)。
- 低通滤波器(LPF) :分离高频分量由超级电容处理,低频分量由电池处理。
- 实施流程
- 数据采集:获取风电/光伏出力时序数据(采样频率≥1 Hz)。
- 频谱划分:通过小波包分解确定分界点(如nL和nH),分配至不同储能单元。
- 控制策略生成:基于频段特性设计储能充放电逻辑(如PI控制器调节电流内环)。
案例:100 MW风电场通过频谱分析,超级电容响应时间<1秒,电池响应时间>10秒,协同平抑波动。
五、并网功率波动评估标准与案例
- 评估标准
- 国标限值:1分钟波动率≤±10%装机容量,10分钟≤±30%。
- 越限次数:24小时内越限次数需趋近于0。
- 频率偏差:并网频率偏差≤±0.2 Hz。
- 案例研究
- 华阳集团项目:光伏+飞轮+电池混合储能系统,飞轮承担高频波动,电池补充能量,并网波动率降低70%。
- 某32 MW风储系统:采用MPC控制策略后,并网功率最大波动从14.14 MW降至5 MW,完全满足国标。
仿真结果示例:
。
六、总结与展望
风电光伏混合储能系统通过小波包分解、频谱分析和多目标优化,显著提升波动平抑效果与经济性。未来需进一步探索人工智能算法在实时控制中的应用,并推动重力储能、氢储能等新技术集成,以应对更高比例可再生能源并网挑战。
📚2 运行结果
部分代码:
%2.执行小波包分解,
% wpt23=wpdec(P23,3,'dmey'); %进行3层小波包分解
wpt23=wpdec(P23,6,'db6');
plot(wpt23);
%节点编号重组
% nodes=[7;8;9;10;11;12;13;14];
nodes=[63;64;65;66;67;68;69;70;71;72;73;74;75;76;77;78;79;80;81;82;83;84;85;86;87;88;89;90;91;92;93;94;95;96;97;98;99;100;101;102;103;104;105;106;107;108;109;110;111;112;113;114;115;116;117;118;119;120;121;122;123;124;125;126];
ord=wpfrqord(nodes); %小波包系数重排,即wavelet packet frequency odrer ,ord是重排后小波包系数索引构成的矩阵 如3层分解的[1;2;4;3;7;8;6;5]
nodes_ord=nodes(ord); %重排后的小波系数
%实现对节点小波节点进行重构
% for i=1:8
for i=1:64
rexP23(:,i)=wprcoef(wpt23,nodes_ord(i));
end
%3.叠加计算获得电池参考功率,注意加上负号,g=grid,bat=battery;sc=suercapacitor
Pg23=rexP23(:,1);
Pbat23=-(rexP23(:,2)+rexP23(:,3)+rexP23(:,4));
Psc23=-(rexP23(:,5)+rexP23(:,6)+rexP23(:,7)+rexP23(:,8));
for j=5:63
Psc23=-(rexP23(:,j))+Psc23
end
%绘图
t=5:5:15000;
subplot(3,1,1);
plot(t,P23,'c',t,Pg23,'m');
ylabel('功率/(MW)');
legend('原始功率','并网功率');
title('原始功率与并网功率');
subplot(3,1,2);
plot(t,Pbat23,'r');
ylabel('功率/(MW)');
title('(a)蓄电池充放功率');
subplot(3,1,3);
plot(t,Psc23,'g');
xlabel('时间/(min)');ylabel('功率/(MW)');
title('(b)超级电容充放功率');
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张晴.平抑风电波动的混合储能容量配置和经济性评估[D].湖南大学,2017.
[2]张晴.平抑风电波动的混合储能容量配置和经济性评估[D].湖南大学,2018.
[3]WEI Yuan,ZHANG Huanchang,HUANG Zhengyong,等.面向风电光伏并网的储能容量配置频谱分析方法[J].南方电网技术, 2019, 013(003):12-17,32.