自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(27)
  • 资源 (3)
  • 收藏
  • 关注

原创 海德汉(HEIDENHAIN)CNC数据采集(可免授权)

一,概述海德汉 常见的系统一般有530、640系统,采集一般有两种方法:(1)购买海德汉官方的SDK(HeidenhainDNC COMComponent),安装之后有相应的demo,支持的语言有C#、C/C++。此方法还需要购买机台授权,购买之后德国那边会给一个授权密码,在机台输入即可。用这个方法的优点是开发周期短,缺点是费用比较高(需购买机台授权和SDK)。(2)使用LSV2 协议进行开发,优点就是不需要授权(不用购买机台授权和SDK),而且该方法不局限于CPU架构(x86、ARM、MIP.

2022-07-30 12:56:23 7895 6

原创 马扎克(Mazak)Smart、Smooth系列 CNC数据采集(可免授权)

马扎克(Mazak)Smart、Smooth系列 CNC数据采集一般有三种方法:(1)使用MTConnect协议(2)调用dll的接口(3)通过TCP协议方法。该方法不局限于CPU架构(x86、ARM、MIPS等等),不局限操作系统(Windows、Linux、FreeRTOS、RT-Thread、μC/OS、裸机等等均可),不局限编程语言(Java、Python、C/C++、C#、Go等等均可)。该方式特别适合于ARM Linux或单片机(STM32、GD32、ESP32等)做的网关产品。

2022-07-29 00:39:10 11898 23

原创 发那科 / 法兰克(Fanuc)CNC数据采集

前面介绍过,发那科CNC数据采集一般有两种方法:(1)通过Focas开发包进行二次开发,Focas开发包支持win32、win64、linux32、linux64、arm linux 32(2)通过TCP协议方法。该方法不局限于CPU架构(x86、ARM、MIPS等等),不局限操作系统(Windows、Linux、FreeRTOS、RT-Thread、μC/OS、裸机等等均可),不局限编程语言(Java、Python、C/C++、C#、Go等等均可)。下面对两种方法都进行相应介绍。

2022-04-12 23:07:32 18760 22

原创 三菱(MITSUBISHI)CNC数据采集

一,概述前面介绍过,三菱CNC数据采集一般有两种方法:(1)通过官方A2 API(也叫EZSocket)进行数据采集,需要安装A2驱动包(仅适用于windows系统)(2)通过纯TCP协议方法。该方法不局限操作系统(Windows、Linux均可),不局限编程语言(Java、Python、C/C++、C#、Go等等)。下面对两种方法都进行相应介绍。二,A2 API方式...

2022-04-10 21:48:10 14179 46

原创 海天注塑机数据采集_弘讯控制器数据采集

一,通信方式串口通信,串口通信参数是固定的二,帧格式起始符帧长度命令字节中间数据校验码结束符通过监听HMI和控制器之间通信的数据,按照上述帧格式来解析数据三,可采集内容1,工作状态开模数环境温度电机温度射出位置推力座位置托模位置/顶出位置模座位置一段实际温度二段实际温度三段实际温度四段实际温度五段实际温度2,模座一段 位置 压力 速度二段 位置 压力 速度三段 ......

2022-04-03 17:30:01 3462 3

原创 CNC数控机床数据采集,CNC数据采集

一,数控机床数据采集方式分类1,采用SDK开发包采集,比如三菱、发那科、海德汉、大卫、华中数控、凯恩帝、沙迪克、牧野电火花、台湾宝元、上海来钠克、精雕等等。2,OPC UA/DA,比如西门子、力士乐。3,直接采集PLC,比如西门子。4,协议采集,比如西门子、三菱、发那科、海德汉、广数、新代、兄弟、马扎克smart。5,IO采集,当某个型号无法用上述方法采集时,可以考虑IO采集,IO采集的数据有限,通常是产量、运转次数、运行时间这类型的生产数据。二,各品牌数控系统数采总体说明1

2022-04-03 14:01:56 13556 11

原创 【Python TensorFlow】 TCN-GRU时间序列卷积门控循环神经网络时序预测算法(附代码)

本文提出了一种TCN-GRU混合神经网络模型用于时间序列预测。该模型结合了时间卷积网络(TCN)的多尺度特征提取能力和门控循环单元(GRU)的长期依赖学习能力,能有效处理复杂时序模式。文章详细介绍了模型构建流程,包括数据准备、预处理、网络构建、训练和评估等步骤,并提供了完整的Python实现代码。代码支持csv和excel格式数据集,可进行单/多输入、单/多步预测,包含详细中文注释。实验结果表明该模型在时序预测任务中表现良好,相关资源可供下载。

2025-11-29 17:00:15 407

原创 【Python TensorFlow】 BiTCN-GRU双向时间序列卷积门控循环神经网络时序预测算法(附代码)

本文提出BiTCN-GRU算法,结合双向时间卷积网络和门控循环单元的优势,以解决传统时序预测模型在捕捉长期依赖和局部特征方面的不足。算法流程包括数据准备、预处理、网络构建、模型训练与评估。代码提供完整实现,支持csv/excel格式数据输入,包含数据读取、预处理、网络训练等功能模块,可实现多特征输入和多步预测。实验结果表明该模型能有效提升预测准确性。资源包含完整代码和示例数据。

2025-11-28 11:45:36 255

原创 【Python TensorFlow】 BiLSTM-Attention双向长短期记忆神经网络带注意力机制时序预测算法(附代码)

本文提出了一种结合双向长短期记忆网络(BiLSTM)和注意力机制的时序预测算法BiLSTM-Attention。该方法通过BiLSTM双向学习序列信息,并利用注意力机制自动聚焦关键时间步特征,有效解决了传统方法难以捕捉长期依赖关系的问题。文章详细介绍了算法流程,包括数据准备、预处理、网络构建、模型训练与评估等步骤,并提供了完整的Python实现代码。代码支持多特征输入和多步预测,包含详细中文注释,可直接应用于电力负荷等时序数据的预测任务。实验结果表明,该方法显著提高了预测准确性。

2025-11-27 21:01:33 375

原创 【Python TensorFlow】 DBO-LSTM-Attention 基于蜣螂算法优化长短期记忆神经网络模型带注意力机制(附代码)

本文提出了一种基于蜣螂优化算法(DBO)改进的LSTM-Attention神经网络模型(DBO-LSTM-Attention),用于时序预测任务。该方法通过模拟蜣螂的四种行为模式(滚球、产卵、幼虫觅食和偷窃)来优化LSTM-Attention的关键超参数,包括学习率、神经元数量和批次大小。实验结果表明,该算法能有效提高预测精度和训练效率。文中提供了完整的Python实现代码,支持CSV/Excel格式数据输入,包含数据预处理、模型构建、参数优化和性能评估等完整流程,可用于电力负荷等多领域预测任务。

2025-11-26 11:22:57 586

原创 【Python TensorFlow】 VMD-LSTM时序预测 基于VMD分解的长短期记忆神经网络模型(附代码)

摘要:本文提出了一种结合变分模态分解(VMD)与LSTM神经网络的VMD-LSTM算法,用于提高复杂时序数据的预测精度。该方法首先利用VMD将原始信号分解为多个本征模态函数(IMF),然后分别对每个IMF分量建立LSTM预测模型,最后通过重构各分量预测结果获得最终输出。实验表明,该算法能有效处理多尺度特征和噪声数据,显著提升预测性能。文中提供了完整的Python实现代码,支持CSV/Excel数据输入,包含数据预处理、模型训练和评估等完整流程。

2025-11-25 14:43:50 847

原创 【Python TensorFlow】 TCN-LSTM时间序列卷积长短期记忆神经网络时序预测算法(附代码)

本文提出了一种结合时间卷积网络(TCN)和长短期记忆网络(LSTM)的混合预测算法(TCN-LSTM),用于解决传统时间序列预测方法在捕捉长期依赖和局部特征方面的不足。该算法利用TCN的并行计算能力和LSTM的序列建模优势,通过五步流程实现:数据准备、预处理、网络构建、模型训练和评估。代码示例展示了数据读取、特征提取、归一化处理及模型训练过程,支持多种输入输出模式。实验结果表明,该混合模型能有效提升时序预测性能,适用于电力负荷、风电场功率等多种应用场景。

2025-11-24 10:41:13 461

原创 【Python TensorFlow】 CNN-BiGRU卷积神经网络-双向门控循环神经网络时序预测算法(附代码)

本文提出了一种结合卷积神经网络(CNN)与双向门控循环单元(BiGRU)的CNN-BiGRU算法,用于解决传统时序预测方法在非线性时间序列处理中的局限性。该方法通过数据预处理、网络构建(包含输入层、卷积层、池化层、双向GRU层和输出层)、模型训练(采用MSE损失和Adam优化器)和评估等步骤实现预测。文章提供了完整的Python代码实现,支持CSV/Excel数据输入,包含数据读取、特征提取、归一化处理和模型训练等功能。实验结果表明,该算法能有效处理时序预测任务,代码注释清晰,用户只需替换数据集即可运行。

2025-11-23 12:15:30 451

原创 【Python TensorFlow】 CNN-GRU卷积神经网络-门控循环神经网络时序预测算法(附代码)

本文提出了一种CNN-GRU混合神经网络模型用于时序预测,结合了CNN提取局部特征和GRU捕捉长期依赖的优势。文章详细介绍了模型构建流程:数据准备、预处理、网络构建(含输入层、卷积层、池化层、GRU层和输出层)、模型训练(采用MSE损失和Adam优化器)及评估方法。提供了完整的Python实现代码,支持csv/excel数据格式,包含数据读取、特征提取、归一化处理和模型训练等步骤,可实现单/多输入与单/多步预测。代码注释清晰,用户只需替换数据集即可运行,适用于电力负荷等多种时序预测场景。

2025-11-22 11:27:47 488

原创 【Python TensorFlow】 BiTCN-LSTM双向时间序列卷积长短期记忆神经网络时序预测算法(附代码)

摘要:本文提出了一种结合双向时序卷积网络(BiTCN)和LSTM的BiTCN-LSTM混合模型,用于解决传统时序预测模型在捕获多尺度特征和长短期依赖关系方面的不足。该模型通过双向TCN提取多尺度特征,结合LSTM处理序列依赖关系,实现了高效的并行预测。文中详细介绍了数据预处理、网络构建、模型训练和评估的完整流程,并提供了可灵活调整的Python代码实现,支持单/多输入、单/多步预测等多种应用场景。实验结果表明,该混合模型在时序预测任务中能有效平衡计算复杂度与预测精度。

2025-11-21 16:10:27 250

原创 【Python TensorFlow】CNN-BiLSTM-Attention时序预测 卷积神经网络-双向长短期记忆神经网络组合模型带注意力机制(附代码)

本文提出了一种CNN-BiLSTM-Attention混合模型用于电力负荷等多特征时序预测。该模型结合CNN的局部特征提取能力、BiLSTM的双向时序处理优势以及注意力机制的关键信息筛选功能,有效解决了传统RNN/LSTM模型在长时序预测中存在的问题。文章详细介绍了模型构建流程,包括数据预处理、网络结构设计(输入层、CNN层、BiLSTM层、注意力层和输出层)、训练评估方法等,并提供了完整的代码实现,支持单/多输入、单/多步预测任务。实验结果表明,该混合模型通过"局部模式+双向序列+动态注意力&q

2025-11-20 11:44:46 984

原创 【Python TensorFlow】CNN-BiLSTM时序预测 卷积神经网络-双向长短期记忆神经网络组合模型(附代码)

摘要:提出一种CNN-BiLSTM混合模型,通过CNN提取局部时域特征,BiLSTM捕获长序列依赖关系,实现多特征多步时间序列预测。模型采用数据预处理、滑动窗口采样和Adam优化器训练,支持csv/excel格式输入。实验表明该方法有效解决了传统RNN/LSTM在突变敏感性和长程依赖方面的不足,代码注释清晰,可直接替换数据集运行。

2025-11-19 14:32:38 554

原创 【Python TensorFlow】CNN-LSTM时序预测 卷积神经网络-长短期记忆神经网络组合模型时序预测算法(附代码)

本文提出CNN-LSTM组合模型用于电力负荷等多变量时序预测。该模型融合卷积神经网络(CNN)的局部特征提取能力和长短期记忆网络(LSTM)的时序依赖建模优势,通过一维卷积和池化提取局部模式,再由LSTM聚合长期依赖信息。实验采用80%数据作为训练集,剩余20%作为测试集,通过数据预处理、网络构建、模型训练和评估等步骤。代码提供完整实现,支持csv/excel数据格式,包含数据读取、归一化、三维重塑等功能,可实现多输入多步预测。结果显示该模型能有效提升预测精度和泛化性能。

2025-11-18 11:37:47 921

原创 【Python TensorFlow】Python BiLSTM双向长短期记忆神经网络时序预测算法(附代码)

摘要:本文提出基于双向长短期记忆网络(BiLSTM)的电力负荷预测方法,通过正反向双通道编码有效捕捉时序特征的长期依赖关系。算法流程包括数据预处理、网络构建(含双向LSTM层)、模型训练(采用MSE损失和Adam优化器)及评估。代码支持多特征输入/多步预测,提供完整数据加载、归一化和三维数据重塑实现,用户只需替换CSV/Excel格式数据集即可运行。实验结果表明该方法能显著提升预测精度,适用于连续数值型时序预测任务。

2025-11-17 21:28:52 377

原创 【Python TensorFlow】BiTCN-BiLSTM双向时间序列卷积双向长短期记忆神经网络时序预测算法(附代码)

本文介绍了BiTCN-BiLSTM时序预测算法,该算法结合双向时间卷积网络(BiTCN)和双向长短期记忆网络(BiLSTM),通过滑动窗口构造监督样本,利用双向扩张卷积提取多尺度局部时序特征,并融合LSTM的长程依赖能力,实现对风电功率等复杂动态模式的多步预测。文中详细阐述了算法的数据预处理、网络构建、模型训练与评估流程,并提供了包含完整中文注释的Python代码示例,支持csv/excel格式输入数据的多特征多步预测任务。实验结果表明,该混合网络结构能有效提升时序预测的准确性和外推能力。

2025-11-16 20:48:24 362

原创 【Python TensorFlow】BiTCN-BiGRU双向时间序列卷积双向门控循环神经网络时序预测算法(附代码)

摘要:该资源提出了一种BiTCN-BiGRU复合时序预测算法,通过结合双向时间卷积网络和双向GRU,有效解决了传统RNN在长时依赖和多步预测中的局限性。算法包含数据预处理、网络构建、麻雀算法优化和模型评估等步骤,配套的MATLAB代码提供详细注释,支持Excel数据集输入。实验结果表明,该方法在多变量时序预测任务中表现出色,显著提升了预测精度和泛化能力。

2025-11-15 22:52:54 540

原创 Python YOLOv5 7.0 基于深度学习的口罩检测识别系统

大约11200张佩戴口罩和未佩戴口罩的人脸图片,其中带口罩的占60%~70%。标注的标签有VOC和YOLO两种格式,分别存储在xml和txt文件中。根据YOLOv5源码一步一步进行训练、检测的流程说明,包括基本参数的修改说明,部分代码的注释等。可以把数据集的图片和标注,按照训练集、验证集、测试集设定的比例进行随机分割。根据标注,在数据集的图片上画出框框,这个可以用来验证数据集是否标注正确。可以把VOC格式的标注转换成YOLO格式的。可以把YOLO格式的标注转换成VOC格式的。40页左右的相关设计报告。

2024-06-08 17:09:53 902 2

原创 ESP32-C3-MINI开发板烧录固件步骤

ESP32-C3 AT 采用两个 UART 接口:UART0 用于下载固件和输出日志,UART1 用于发送 AT 命令和接收 AT 响应(如果固件是SPI AT的,则使用SPI代替UART1来发送AT命令和接收AT响应)。在电脑会出现两个串口(电脑需要安装USB转串口的驱动),一个是用来输出日志/下载固件,另一个是用来发送AT命令。此时按住开发板上的BOOT按钮,在按RST按钮,松开BOOT按钮即可进入烧录状态,会有烧录进度条显示。(5)选择烧录串口(根据步骤3,拔插一下看看电脑的那个串口是烧录串口)

2022-09-15 16:19:36 10383 1

原创 Labview 2020 中文版安装教程

2.3 按照提示,接受许可协议,并一直点击下一步即可。2.4 NI Package Manager安装之后,会自动进入工具包的安装,接受许可协议,使用默认的勾选,并一直点击下一步即可。在开始菜单找到 NI Labview 2020启动,上面显示 未注册, 实际已经可以使用。分享的 labview 2020 中文版安装程序,仅供学习交流使用,切勿用于商业用途。,右键 以管理员身份运行,把每一个选项都标记成绿色,然后关闭该软件即可。2.5 安装完毕,会提示检查更新、激活等,按下面操作即可。

2022-09-10 01:29:35 10070 2

原创 Ubuntu搭建ESP32-C3-MINI开发板 ESP-AT 编译环境

在esp-at目录下,执行 ./build.py menuconfig,会出现以下提示选择,如果需要使用SPI AT,可以在Module name那里选择 ESP32C3-SPI那项,此过程会自动克隆 ESP-IDF 代码(ESP-IDF是乐鑫的SDK)5.1 克隆ESP-IDF submodule有提示失败时可执行如下命令,可反复执行,直到没失败提示为止。

2022-09-08 18:05:43 3441

原创 日立(Hitachi)喷码机数据采集

一,简介日立喷码机可采集的内容挺丰富,比如设备状态,告警状态,印字次数,配方列表,正在使用的配方名(在喷码机里叫做Message,国内常叫配方),配方编号等等。在数据采集过程中,遇到了一些坑,特地记录一下。二,过程1,购买通信板卡以及安装授权文件通信板卡可以扩展出modbus通信,在这里吐槽一下代理商,买了板卡只给了安装示意图,没给授权文件,搞了一天一直连不上喷码机,咨询代理商才知道还需要把授权文件发过来并安装才行。2,使用官方SDK测试在这里再次吐槽两下代理商:一是资料不一次性

2022-04-05 21:42:35 1345

原创 恩格尔注塑机数据采集

本文章适用于使用CC300控制器,采用欧规63(Euromap63)的恩格尔注塑机。一,开通授权需要和德国工程师邮件联系,google翻译一下即可。PS:有问题需解决也是通过邮件联系,响应速度一般。二,安装配置软件需一台windows电脑来安装配置软件e-factory configuration(软件绑定电脑),第一次安装时,德国工程师可远程协助安装以及进行配置。主要是需要进行网关配置。三,设置机台网络主要是设置机台IP以及网关IP(第二步所设置的网关),设置好之后,在e-fa

2022-04-03 18:59:10 3142 1

【工业自动化】西门子SINUMERIK 840DSL数控系统报警诊断技术:NC与驱动故障分析及处理方法

内容概要:本手册为西门子SINUMERIK 840D sl/840DE sl数控系统的报警诊断指南,涵盖NC报警、循环报警、HMI报警、SINAMICS报警、驱动与I/O报警、PLC报警及系统反应等内容。手册详细列出了各类报警的编号、说明、反应机制、处理方法和程序恢复步骤

2025-11-17

西门子SINUMERIK 840DSL 基本功能(功能手册)

西门子SINUMERIK 840DSL 基本功能(功能手册)

2025-11-17

SINUMERIK 840D sl, SINAMICS S120 机床数据和参数

SINUMERIK 840D sl, SINAMICS S120 机床数据和参数

2025-11-17

西门子SINUMERIK 840DSL 设备手册

西门子SINUMERIK 840DSL 设备手册

2025-11-17

西门子SINUMERIK 840DSL 系统调试:NC、PLC、驱动开机调试手册

西门子SINUMERIK 840DSL 系统调试:NC、PLC、驱动开机调试手册

2025-11-17

数控系统西门子SINUMERIK 840DSL调试技术指南:机床参数配置与PLC通信协议应用

内容概要:本文档为《西门子SINUMERIK 840DSL 简明调试手册》,主要介绍SINUMERIK 840D sl数控系统的调试方法与技术参数设置,涵盖系统初始化、PLC通信配置、轴控制参数设定、刀具管理、动态响应优化及各功能模块(如NC、PLC、NCK)的数据交互配置等内容。文档详细列出了调试流程、关键参数(MD)、变量地址(DB块)、信号映射关系以及电流环、速度环、位置环等控制回路的整定步骤,并提供具体操作示例和图表辅助说明。 适合人群:从事数控设备调试、维护及自动化系统集成的工程师,具备一定PLC与数控系统基础知识的技术人员。 使用场景及目标:①指导现场完成SINUMERIK 840D sl系统的快速启动与基本调试;②实现刀具管理系统配置与动态性能优化;③进行NC与PLC间信号传输的定义与故障排查;④掌握各控制环(电流、速度、位置)的自动整定方法。 阅读建议:本手册侧重实际操作与参数设置,建议结合设备硬件环境边操作边查阅,重点关注参数表、DB块地址分配及调试流程图,确保每一步配置准确无误,避免因参数错误导致设备异常运行。

2025-11-17

西门子SINUMERIK 840DSL 基本软件和操作软件开机调试手册

西门子SINUMERIK 840DSL 基本软件和操作软件开机调试手册

2025-11-17

SINUMERIK 840D sl/ 828D工作准备部分数控系统基于SINUMERIK 840D sl/828D的NC编程技术:复杂工件加工中的变量控制与程序管理应用

内容概要:该文档为西门子SINUMERIK 840D sl / 828D数控系统的编程手册,主要介绍其工作准备部分的高级编程功能。内容涵盖灵活的NC编程(如变量定义、运算、程序控制)、文件与程序管理、保护区设置、特殊位移指令、坐标转换、运动链控制、刀具补偿、轨迹特性、轴耦合、同步动作、摆动、冲裁、磨削等核心功能,并详细说明了宏指令、外部循环编程及各类系统函数的应用。手册重点面向复杂工件程序的编制,支持高级语言特性以提升编程效率与灵活性。; 适合人群:数控系统编程人员、机械加工工艺设计人员,以及具备一定数控编程基础的工程技术人员;适用于从事高端制造、精密加工领域的研发与操作人员。; 使用场景及目标:①用于掌握SINUMERIK系统中高级编程方法,实现复杂曲面、多轴联动、高精度轨迹控制等加工任务;②指导用户进行程序结构设计、变量管理、多通道协同控制及故障排查,提升自动化加工效率与精度;③支持定制化加工循环开发与系统集成。; 阅读建议:建议结合实际机床操作与编程环境进行学习,重点关注变量定义、程序控制结构与坐标转换等核心章节,并参考附录中的指令可用性表格确认功能在具体型号(如828D)上的支持情况;使用前务必熟悉安全规范与系统配置要求。

2025-11-16

SYNTEC-新代CNC操作说明书

SYNTEC_新代CNC操作说明书

2022-10-12

brother数控系统TC-S2ZNC操作说明书

brother数控系统TC-S2ZNC操作说明书

2022-10-12

广州数控GSK988TA编程操作手册

广州数控GSK988TA编程操作手册

2022-10-12

三菱CNC通信软件说明-EZSocket通信说明

三菱CNC通信软件说明_EZSocket通信说明

2022-10-12

SYNTEC新代系统硬件连接说明书

SYNTEC新代系统硬件连接说明书

2022-10-12

发那科-法兰克-Fanuc-0i-信号表

发那科_法兰克_Fanuc_0i_信号表

2022-10-12

西门子840DSL-NC变量和接口信号

西门子840DSL_NC变量和接口信号

2022-10-12

法格-FAGOR-8055TC操作手册

法格_FAGOR-8055TC操作手册

2022-10-12

法格-FAGOR传输软件操作步骤

法格_FAGOR传输软件操作步骤

2022-10-12

发那科CNC SDK Demo源码,Focas1_2 SDK Demo source code,,C#

使用发那科SDK的demo程序源码,C#

2022-04-12

Euromap63,eu63,欧规63

欧规63,Euromap63数据交互接口文档

2022-04-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除