CNN记录】pytorch中flatten函数

pytorch原型

torch.flatten(input, start_dim=0, end_dim=- 1)

作用:将连续的维度范围展平维张量,一般写再某个nn后用于对输出处理,

参数:

start_dim:开始的维度

end_dim:终止的维度,-1为最后一个轴

默认值时展平为1维

例子

1、默认参数

input = torch.randn(2, 3, 4, 5)
output = torch.flatten(input)
输出维:torch.Size([120])

2、设置参数

input = torch.randn(2, 3, 4, 5)

output = torch.flatten(input,1)
输出shape为:torch.Size([2, 60])

output = torch.flatten(input,1,2)
输出shape为:torch.Size([2, 12, 5])

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 以下是使用 PyTorch MTL_CNN 的示例代码: ```python import torch import torch.nn as nn class MTL_CNN(nn.Module): def __init__(self, num_classes1, num_classes2): super(MTL_CNN, self).__init__() # define shared CNN layers self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.relu = nn.ReLU(inplace=True) # define task-specific output layers self.fc1 = nn.Linear(64 * 8 * 8, num_classes1) self.fc2 = nn.Linear(64 * 8 * 8, num_classes2) def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.pool(x) x = self.conv2(x) x = self.relu(x) x = self.pool(x) x = self.conv3(x) x = self.relu(x) x = self.pool(x) # flatten the output for each task-specific output layer x = x.view(-1, 64 * 8 * 8) # pass through task-specific output layers out1 = self.fc1(x) out2 = self.fc2(x) return out1, out2 ``` 在这个示例,我们定义了一个名为 `MTL_CNN` 的 PyTorch 模型类,它继承自 `nn.Module` 类。这个模型类包含了一个共享的 CNN 层和两个任务特定的输出层。共享的 CNN 层包括三个卷积层和一个最大池化层,用于从输入图像提取特征。两个任务特定的输出层分别是一个全连接层,用于分类任务 1,和另一个全连接层,用于分类任务 2。 在 `forward` 方法,我们首先通过共享的 CNN 层处理输入图像,然后将 CNN 层的输出展平,以便将其传递到两个任务特定的输出层。最后,我们返回两个任务特定的输出层的输出。 ### 回答2: MTL_CNN是一种使用PyTorch的神经网络模型。MTL代表多任务学习,CNN代表卷积神经网络。 首先,我们需要导入PyTorch库来构建我们的模型。导入所需的库之后,我们可以开始定义我们的MTL_CNN模型。 在MTL_CNN,我们将使用卷积层、池化层和全连接层来构建我们的网络。 我们的模型将输入多个任务的数据,每个任务将有自己的卷积层。这意味着每个任务将学习其特定的特征。接下来,我们将对每个卷积层的特征进行池化操作,以减少参数数量和提取最重要的特征。 在卷积和池化后,我们将连接所有任务的特征,并将其输入到全连接层。全连接层将对连接的特征进行进一步的处理,并输出最终的任务结果。 为了训练和优化我们的MTL_CNN模型,我们将使用损失函数和优化器。损失函数将根据任务结果评估我们的模型的性能,优化器将根据损失函数的梯度更新我们的模型参数。 最后,我们可以使用PyTorch提供的数据加载器等工具加载和处理我们的数据集,并使用训练数据集对MTL_CNN模型进行训练。 通过迭代训练和调整超参数,我们可以不断改进我们的MTL_CNN模型,以提高其在各个任务上的性能和泛化能力。 总结起来,MTL_CNN是一个在PyTorch实现的多任务学习的卷积神经网络模型。使用PyTorch的库和函数,我们可以定义、训练和优化MTL_CNN模型,以适应各种任务要求。 ### 回答3: MTL_CNN是一种使用PyTorch的神经网络模型。MTL代表多任务学习,CNN代表卷积神经网络。 PyTorch是一种基于Python的深度学习框架,它提供了丰富的工具和库,使得构建和训练神经网络变得更加方便。 MTL_CNN的目标是同时处理多个任务。在传统的CNN模型,通常只有一个输出,而在MTL_CNN,我们有多个输出。每个输出对应一个特定的任务。 MTL_CNN的主要结构包含卷积层、池化层和全连接层。卷积层用于特征提取,通过应用多个卷积核,我们可以从输入图像提取不同的特征。池化层用于减少特征图的大小,并保留最重要的信息。全连接层将特征映射到每个任务的输出。 在训练MTL_CNN模型时,我们使用多个损失函数,每个损失函数对应一个任务。通过最小化这些损失函数,我们可以同时优化多个任务。 PyTorch提供了各种实用的函数和类,用于构建MTL_CNN模型。我们可以使用torch.nn模块的类来定义网络的各个层,如卷积层、池化层和全连接层。我们还可以使用torch.optim模块的优化器来更新模型的参数。 最后,通过迭代训练数据集来优化MTL_CNN模型。我们可以使用PyTorch提供的数据加载器来便捷地加载和处理数据集。 总的来说,使用PyTorchMTL_CNN模型非常方便。PyTorch提供了丰富的功能和简洁的API,使得我们能够更轻松地构建和训练多任务的卷积神经网络模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值