03-Redis分布式限流算法之令牌桶

       工作中对外提供的API 接口设计很多时候要考虑限流,如果不考虑,可能会造成系统的连锁反应,轻者响应缓慢,重者系统宕机。而常用的限流算法有令牌桶算法和漏桶算法,本篇介绍令牌桶算法

1、令牌桶算法

 

原理如上图,系统以恒定速率不断产生令牌,令牌桶有最大容量,超过最大容量则丢弃,同时用户请求接口,如果此时令牌桶中有令牌则能访问获取数据,否则直接拒绝用户请求

2、java代码实现

/**
 * 线程池每0.5s发送随机数量的请求,每次请求计算当前的令牌数量,请求令牌数量超出当前令牌数量,则产生限流
 */
@Slf4j
public class TokensLimiter {
 
    private ScheduledExecutorService scheduledExecutorService = Executors.newScheduledThreadPool(1);
 
    // 最后一次令牌发放时间
    public long timeStamp = System.currentTimeMillis();
    // 桶的容量
    private int capacity = 7;
    // 令牌生成速度5/s
    private int rate = 5;
    // 当前令牌数量
    private int tokens;
 
    public void acquire() {
        //令牌生成速度 = 5/1s   此次时间-上次生成时间=中间耗费时间
        scheduledExecutorService.scheduleWithFixedDelay(() -> {
            long now = System.currentTimeMillis();
​
            long tokensCal = tokens + (now - timeStamp) * rate/1000;
            int tokenCalInt = (int)tokensCal;
            // 当前令牌数
            tokens = Math.min(capacity,tokenCalInt);
            //每隔0.5秒发送随机数量的请求
            int permits = (int) (Math.random() * 9) + 1;
            log.info("请求令牌数:" + permits + ",当前令牌数:" + tokens);
            timeStamp = now;
            if (tokens < permits) {
                // 若不到令牌,则拒绝
                log.info("限流了");
            } else {
                // 还有令牌,领取令牌
                tokens -= permits;
                log.info("剩余令牌=" + tokens);
            }
        }, 1000, 500, TimeUnit.MILLISECONDS);
        //1秒以后开始执行第一次任务,第一次执行完每隔500ms执行下次任务
    }
 
    public static void main(String[] args) {
        TokensLimiter tokensLimiter = new TokensLimiter();
        tokensLimiter.acquire();
    }
}
​输出结果:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步道师就是我

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值