flink实践-电商用户行为数据分析专题
文章平均质量分 82
步道师就是我
10年大龄码农
展开
-
flink实践-电商用户行为数据分析-第3章、实时流量统计
1、模块创建和数据准备在 UserBehaviorAnalysis 下 新 建 一 个 maven module 作 为 子 项 目 , 命 名 为 NetworkFlowAnalysis。在这个子模块中,我们同样并没有引入更多的依赖,所以也不需要改动 pom 文件。将 apache 服务器的日志文件 apache.log 复制到资源文件目录 src/main/resources 下,我们将从这里读取数据。当然,我们也可以仍然用 UserBehavior.csv 作为数据源,这时我们分析的就原创 2022-05-01 09:56:41 · 1436 阅读 · 0 评论 -
flink实践-电商用户行为数据分析-第2章、实时热门商品统计
首先要实现的是实时热门商品统计,我们将会基于 UserBehavior 数据集来进行分析。 项目主体用 Java 编写,采用 IDEA 作为开发环境进行项目编写,采用 maven 作为项目构建和管理工具。首先我们需要搭建项目框架。1、创建 Maven 项目1.1 项目框架搭建打开 IDEA,创建一个 maven 项目,命名为 UserBehaviorAnalysis。由于包含了多个模块,我们可以以UserBehaviorAnalysis 作为父项目,并在其下建一个名为HotItemsAn原创 2022-04-29 11:30:46 · 1359 阅读 · 0 评论 -
flink实践-电商用户行为数据分析-第4章-市场营销商业指标统计分析
1、模块创建和数据准备继续在 UserBehaviorAnalysis 下新建一个 maven module 作为子项目,命名为MarketAnalysis。这个模块中我们没有现成的数据,所以会用自定义的测试源来产生测试数据流,或者直接用生成测试数据文件。2、APP 市场推广统计随着智能手机的普及,在如今的电商网站中已经有越来越多的用户来自移动端,相比起传统浏览器的登录方式,手机 APP 成为了更多用户访问电商网站的首选。对于电商企业来说,一般会通过各种不同的渠道对自己的APP 进行原创 2022-05-01 09:58:01 · 601 阅读 · 1 评论 -
flink实践-电商用户行为数据分析-第5章-恶意登录监控
1、模块创建和数据准备继续在 UserBehaviorAnalysis 下新建一个 maven module 作为子项目,命名为LoginFailDetect。在这个子模块中,我们将会用到 flink 的 CEP 库来实现事件流的模式匹配,所以需要在 pom 文件中引入 CEP 的相关依赖:<dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-cep_${sca原创 2022-05-01 09:58:56 · 522 阅读 · 0 评论 -
flink实践-电商用户行为数据分析-第6章-订单支付实时监控
在电商网站中,订单的支付作为直接与营销收入挂钩的一环,在业务流程中非常重要。对于订单而言,为了正确控制业务流程,也为了增加用户的支付意愿,网站一般会设置一个支付失效时间,超过一段时间不支付的订单就会被取消。另外,对于订单的支付,我们还应保证用户支付的正确性,这可以通过第三方支付平台的交易数据来做一个实时对账。在接下来的内容中,我们将实现这两个需求。1、模块创建和数据准备同样地,在 UserBehaviorAnalysis 下新建一个 maven module 作为子项目,命名为OrderTime原创 2022-05-01 10:00:04 · 957 阅读 · 0 评论 -
flink实践-电商用户行为数据分析-第1章、项目介绍
1、电商的用户行为电商平台中的用户行为频繁且较复杂,系统上线运行一段时间后,可以收集到大量的用户行为数据,进而利用大数据技术进行深入挖掘和分析,得到感兴趣的商业指标并增强对风险的控制。电商用户行为数据多样,整体可以分为用户行为习惯数据和业务行为数据两大类。用户的行为习惯数据包括了用户的登录方式、上线的时间点及时长、点击和浏览页面、页面停留时间以及页面跳转等等,我们可以从中进行流量统计和热门商品的统计,也可以深入挖掘用户的特征;这些数据往往可以从 web 服务器日志中直接读取到。而业务行为原创 2022-04-29 11:29:27 · 1551 阅读 · 0 评论 -
flink实践-电商用户行为数据分析-第7章-附录-电商常见指标汇总
1、电商指标整理现在的电子商务:1、大多买家通过搜索找到所买物品,而非电商网站的内部导航,搜索关键字更为重要;2、电商商家通过推荐引擎来预测买家可能需要的商品。推荐引擎以历史上具有类似购买记录的买家数据以及用户自身的购买记录为基础,向用户提供推荐信息;3、电商商家时刻优化网站性能,如 A/B Test 划分来访流量,并区别对待来源不同的访客,进而找到最优的产品、内容和价格;4、购买流程早在买家访问网站前,即在社交网络、邮件以及在线社区中便已开始,...原创 2022-05-01 10:03:16 · 1683 阅读 · 0 评论