代码展示:
dp[i][j]=Math.min(dp[i-1][j],dp[i][j-1])+grid[i-1][j-1];
该题可以通过动态规划解决,动态规划的题根据以下的5大步骤便可轻松解决
1.状态表示
题目要求我们计算从起点到最后一个位置的最小路径和,我们可以创建一个dp表,dp【i】【j】表示从起点到【i,j】位置的最小路径和
2.状态转移方程
我们从最近的一步开始分析,我们有两种方法可以到达【i,j】位置,要么从【i-1,j】位置向下移动,要么从【i,j-1】位置向右移动,我们要如何选择呢,由于我们需要求出的是最小路径和,所以我们可以比较到达【i-1,j】和【i,j-1】的最小路径和,即dp【i-1,j】和dp【i,j-1】,从较小的那个位置出发到【i,j】位置即加上【i,j】位置的数值,便是【i,j】的最小路径和,所以我们可以得到状态转移方程: dp[i][j]=Math.min(dp[i-1][j],dp[i][j-1])+grid[i-1][j-1];
3.初始化
我们可以通过增加辅助结点的方式来辅助初始化,在该题中我们创建的dp数值相比于grid数组,我们要多加一行一列,而此时我们要注意,
(1).辅助结点中添加的值要保证后续的数据添加是正确的,根据对该题的分析,我们需要将第一行和第一列除了[0,1]位置和[1.0]位置,其他位置都设为int数据的最大值
(2).下标的映射关系,此时由于添加了一行一列,所以dp[i][j]对应grid[i-1][j-1]
4.填充数组
根据状态转移方程填充数组
5,返回值
终点位置是【m,n】,所以要返回dp[m][n]