Java 动态规划 64. 最小路径和

文章介绍了如何用动态规划解决求解网格中从起点到终点的最小路径和问题。关键步骤包括状态表示(dp[i][j]表示起点到[i,j]的最小路径和)、状态转移方程(dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i-1][j-1])、初始化、填充dp数组以及返回终点的值dp[m][n]。
摘要由CSDN通过智能技术生成

 

代码展示:

 dp[i][j]=Math.min(dp[i-1][j],dp[i][j-1])+grid[i-1][j-1];

 该题可以通过动态规划解决,动态规划的题根据以下的5大步骤便可轻松解决

        1.状态表示

                题目要求我们计算从起点到最后一个位置的最小路径和,我们可以创建一个dp表,dp【i】【j】表示从起点到【i,j】位置的最小路径和

        2.状态转移方程

                我们从最近的一步开始分析,我们有两种方法可以到达【i,j】位置,要么从【i-1,j】位置向下移动,要么从【i,j-1】位置向右移动,我们要如何选择呢,由于我们需要求出的是最小路径和,所以我们可以比较到达【i-1,j】和【i,j-1】的最小路径和,即dp【i-1,j】和dp【i,j-1】,从较小的那个位置出发到【i,j】位置即加上【i,j】位置的数值,便是【i,j】的最小路径和,所以我们可以得到状态转移方程: dp[i][j]=Math.min(dp[i-1][j],dp[i][j-1])+grid[i-1][j-1];

        3.初始化

                我们可以通过增加辅助结点的方式来辅助初始化,在该题中我们创建的dp数值相比于grid数组,我们要多加一行一列,而此时我们要注意,

        (1).辅助结点中添加的值要保证后续的数据添加是正确的,根据对该题的分析,我们需要将第一行和第一列除了[0,1]位置和[1.0]位置,其他位置都设为int数据的最大值

        (2).下标的映射关系,此时由于添加了一行一列,所以dp[i][j]对应grid[i-1][j-1]

        4.填充数组

                根据状态转移方程填充数组

        5,返回值

                终点位置是【m,n】,所以要返回dp[m][n]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小林想被监督学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值