奇怪的知识

数据中台是什么?

  • 是一种战略选择和组织形式,
  • 是依据企业特有的业务模式和组织架构,
    通过有形的产品和可实施方法构建的一套持续不断
    把数据变成资产并服务于业务的机制。
http://113.96.62.246:30001/down?name=c04ceca11d9d448eb0d9f6ffb0711f26&token=615ca89bbf0c4a080008c6dce7c3479a&password=$2y$10$Y9WEOgQagpO9TigiOnbLFufzaGz6rTzgkLbyt.LfeS1bSjM/qW/aG

数据中台的四大核心能力?

  • 数据汇聚整合
    大量系统、功能和应用重复建设,
    存在巨大的数据资源、计算资源和人力资源的浪费,
    同时组织壁垒也导致数据孤岛的出现,
    使得内外部数据难以全局规划。

    数据中台需要对数据进行整合和完善,
    提供适用、适配、成熟、完善的一站式大数据平台工具,
    在简便有效的基础上,
    实现数据采集、交换等任务配置以及监控管理。

    数据中台必须具备数据集成与运营方面的能力,
    能够接入、转换、写入或缓存企业内外部多种来源的数据,
    协助不同部门和团队的数据使用者
    更好地定位数据、理解数据。
    同时数据安全、灵活可用也是绝大多数企业看重的,
    他们期望数据中台能协助企业提升数据可用性和易用性,
    且在系统部署上能支持多种模式(见图2-3)。

  • 数据提纯加工
    数据资产化。
    企业需要完整的数据资产体系,
    围绕着能给业务带来价值的数据资产进行建设,
    推动业务数据向数据资产的转化。
    传统的数字化建设往往局限在单个业务流程,
    忽视了多业务的关联数据,缺乏对数据的深度理解。
    数据中台必须连通全域数据,
    通过统一的数据标准和质量体系,
    建设提纯加工后的标准数据资产体系,
    以满足企业业务对数据的需求

  • 数据服务可视化
    为了尽快让数据用起来,
    数据中台必须提供便捷、快速的数据服务能力,
    让相关人员能够迅速开发数据应用,
    支持数据资产场景化能力的快速输出,以响应客户的动态需求。
    多数企业还期待数据中台可以提供数据化运营平台,
    帮助企业快速实现数据资产的可视化分析,
    提供包括实时流数据分析、预测分析、机器学习等
    更为高级的服务,为企业数据化运营赋能。
    此外,伴随着人工智能技术的飞速发展,
    AI的能力也被多数企业期待能应用到数据中台上,
    实现自然语言处理等方面的服务。
    数据洞察来源于分析,数据中台必须提供丰富的分析功能,
    数据资产必须服务于业务分析才能解决企业在数据洞察方面的短板,
    实现与业务的紧密结合

  • 数据价值变现
    数据中台通过打通企业数据,
    提供以前单个部门或者单个业务单元无法提供的数据服务能力,
    以实现数据的更大价值变现。
    企业期待数据中台能提升跨部门的普适性业务价值能力,
    更好地管理数据应用,
    将数据洞察变成直接驱动业务行动的核心动能,
    跨业务场景推进数据实践。
    同时,企业对于如何评估业务行动的效果也十分关注,
    因为没有效果评估就难以得到有效反馈,
    从而难以迭代更新数据应用,难以持续为客户带来价值

数据中台VS业务中台

  • 业务中台更多偏向于业务流程管控,
    将业务流程中共性的服务抽象出来,
    形成通用的服务能力。
    更多的说的是我们建设过程中的模块化能力,
    比如支付模块,可以是商品交易,
    可以是游戏充值等任意需要支付功能的地方

  • 数据中台则是抽象数据能力的共性形成通用数据服务能力,
    关心的是产出数据的能力,比如产出的用户画像,
    可以用在任意多个产品上,
    而实际产出这个用户画像,可能是来自很多源的数据组合形成的。

数据中台VS数据仓库

数据仓库的主要场景是:支持管理决策和业务分析,

而数据中台则是将数据服务化之后提供给业务系统,
目标是将数据能力渗透到各个业务环节

数据中台持续不断地将数据进行资产化、价值化并应用到业务,
而且关注数据价值的运营。

数据中台建设包含数据体系建设,
也就是数据中台包含数据仓库的完整内容,
数据中台将企业数据仓库建设的投入价值进行最大化,
以加快数据赋能业务的速度,
为业务提供速度更快、更多样的数据服务。

数据中台也可以将已建好的数据仓库当成数据源,
对接已有数据建设成果,避免重复建设。
当然也可以基于数据中台提供的能力,通过汇聚、加工、治理各类数据源,
构建全新的离线或实时数据仓库。
另外,数据中台一般采用全新数据技术架构,
可以更方便地进行数据价值的挖掘。
随着企业数据量越来越大,智能化场景越来越多,
传统架构的存储计算能力无法满足这类数据业务的需求。
而随着机器学习、深度学习等技术的发展,
从看似无用的数据中挖掘出新价值的能力也越来越强,
新的技术架构为这些场景的建设提供了很好的能力支撑。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值