给出一个长度为N的数组,进行Q次查询,查询从第i个元素开始长度为l的子段所有元素之和。
例如,1 3 7 9 -1,查询第2个元素开始长度为3的子段和,1 {3 7 9} -1。3 + 7 + 9 = 19,输出19。
Input
第1行:一个数N,N为数组的长度(2 <= N <= 50000)。 第2 至 N + 1行:数组的N个元素。(-10^9 <= N[i] <= 10^9) 第N + 2行:1个数Q,Q为查询的数量。 第N + 3 至 N + Q + 2行:每行2个数,i,l(1 <= i <= N,i + l <= N)
Output
共Q行,对应Q次查询的计算结果。
Input示例
5 1 3 7 9 -1 4 1 2 2 2 3 2 1 5
Output示例
4 10 16 19
很裸的线段树了,树状数组也可以,练下写线段树吧。
#include <bits/stdc++.h>
#define lid (id *2 )
#define rid (id *2 | 1)
using namespace std;
typedef long long ll;
const int maxn = (int)5e4 + 10;
struct node {
int l,r;
ll sum;
}tr[maxn * 4];
void push_up(int id ){
tr[id].sum = tr[lid].sum + tr[rid].sum;
}
void build(int id ,int l ,int r) {
tr[id].l = l;
tr[id].r = r;
if(l == r) cin >> tr[id].sum;
else {
int mid = (l + r) / 2;
build(lid , l , mid);
build(rid , mid + 1 , r);
push_up(id);
}
}
ll query(int id , int l ,int r) {
if(tr[id].l == l && tr[id].r == r) return tr[id].sum;
else {
int mid = (tr[id].l + tr[id].r) >> 1;
if(r <= mid) return query(lid, l, r);
else if(l > mid) return query(rid, l, r);
else return query(lid, l, mid) + query(rid, mid + 1, r);
}
}
int main() {
int n , q;
cin >> n;
build(1, 1, n);
cin >> q;
while(q--) {
int x,y;
cin >> x >> y;
cout << query(1, x, x + y - 1) << endl;
}
return 0;
}