多重背包

多重背包

问题简析

已知:有一个容量为V的背包和N件物品,第i件物品最多有Num[i]件,每件物品的重量是weight[i],收益是cost[i]。

问题:在不超过背包容量的情况下,最多能获得多少价值或收益

举例:背包容量为V = 8,则背包可以装下的最大价值为64.即2个物品三,4个物品一

算法简析

本问题和完全背包很类似,不过添加了数目的限制条件。这里直接给出方程。
状态转移方程:

f[i][v]:表示前i件物品放入重量为v的背包获得的最大收益  
f[i][v] = max(f[i][v],f[i - 1][V - k * Weight[i]] + k * Value[i]);  
其中0 <= k <= min(Num[i],V/Weight[i]);//这里和完全背包不。  
边界条件  
f[i][0] = 0;  
f[v][0] = 0;  

算法步骤

for (int i = 1;i <= N;i++)  
    {  
        for (int v = Weight[i];v <= V;v++)  
        {  
            f[i][v] = 0;  
            nCount = min(Num[i],v/Weight[i]);//是当前背包容量v,而不是背包的总容量  
            for (int k = 0;k <= nCount;k++)  
            {  
                f[i][v] = max(f[i][v],f[i - 1][v - k * Weight[i]] + k * Value[i]);  
            }  
        }  
    }  
    return f[N][V];  

算法优化->转换01背包

即将所有物品全部单独列出当作一种数量为1的物品然后可以用之前的二维转换一维的方式优化空间复杂度。此方法思路简单,但对于时间上没有帮助故此不进行举例。

算法优化->二进制拆分

对每i件物品,拆分的策略为:新拆分的物品的重量等于1件,2件,4件,..,(2^(k - 1)),Num[i] - (2^(k - 1))件,其中k 是满足Num[i] - 2^k + 1 > 0 的最大整数。

注意,

(1)最后一个物品的件数的求法和前面不同,其直接等于 该物品的最大件数 - 前面已经分配之和。

(2)分成的这几件物品的系数和为Num[i],表明第i种物品取的件数不能多于Num[i]。

举例:某物品为13件,则其可以分成四件物品,其系数为1,2,4,6.这里k = 3。

当然,这里使用二进制的前提还是使用二进制拆分能保证对于0,,,Num[i]间的每一个整数,均可以用若干个系数的和表示。

具体使用时,有一个小优化,即:
我们不对所有的物品进行拆分,因此物品一旦拆分,其物品个数肯定增加,那么复杂度肯定上去。

此时,我们可以选择性地对物品进行拆分:

(1)如果第i个物品的重量Weight[i] * 物品的个数Num[i] >= 背包总重量V,可以不用拆分。

(2)如果第i个物品的重量Weight[i] * 物品的个数Num[i] < 背包总重量V,可以不用拆分。

其实,拆不拆分,就看该物品能不能满足完全背包的条件。即,看该物品能不能无限量供应。

解释:为啥满足Weight[i] * 物品的个数Num[i] >= 背包总重量V的物品可以不用拆分?

此时,满足该条件时,此物品原则上是无限供应,直到背包放不下为止。

最终,对于不需要拆分的物品,可以看出完全背包的情况,调用处理完全背包物品的函数。对于需要拆分的物品,可以看出01背包的情况,调用处理01背包物品的函数。

这样,由于不对满足完全背包的物品进行拆分,此时物品个数就没有对所有物品拆分时的物品个数多,即程序中外层循环降低,复杂度也就下去了。

    for (int i = 1;i <= N;i++)  
    {  
        if (Weight[i] * Num[i] >= V)  
        {  
            //完全背包:该类物品原则上是无限供应,  
            //此时满足条件Weight[i] * Num[i] >= V时,  
            //表示无限量供应,直到背包放不下为止.  
            CompletePack(Weight[i],Value[i]);  
        }  
        else  
        {  
            k = 1;  
            nCount = Num[i];  
            while(k <= nCount)  
            {  
                ZeroOnePack(k * Weight[i],k * Value[i]);  
                nCount -= k;  
                k *= 2;  
            }  
            ZeroOnePack(nCount * Weight[i],nCount * Value[i]);  
        }  
    }  
    return f[V];  
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值