40、多水平因果干预时间序列预测

多水平因果干预时间序列预测

1. 因果三重注意力时间序列预测模型概述

因果三重注意力时间序列预测模型(CTTT)主要包含两个部分:表示模型和预测模型。表示模型用于学习每个时间点的表示向量,它利用门控残差网络(GRN)选择相关特征,并使用门控线性单元(GLU)抑制不必要的信息。预测模型是一个带有长短期记忆网络(LSTM)单元的编码器 - 解码器循环网络,基于表示模型学习到的表示向量来预测目标值。同时,模型部署了三个注意力模块,以帮助捕捉局部和全局信息,并减轻混杂效应。

1.1 表示模型

在现实世界的时间序列数据集中,许多特征的预测价值较低,因此变量选择对于提升模型性能至关重要。受相关变量选择网络的启发,我们提出了独立于预测模型的表示模型,并且在训练预测模型之前先对其进行训练。

1.1.1 输入处理
  • 对于系列项和分类变量,使用实体嵌入;对于连续变量,使用线性变换。将 m 个协变量和一个系列项转换为 m + 1 个 d 维向量 $e_{j,t}^{(k)} \in \mathbb{R}^d$,其中 $e_{j,t}^{(k)}$ 表示窗口 j 在时间 t 的第 k 个转换输入。
  • 将扁平化的转换输入 $e_{j,t}^{(1)}, \cdots, e_{j,t}^{(m + 1)}$ 进行拼接,得到 $\xi_{j,t}$。
1.1.2 变量选择权重生成

将 $\xi_{j,t}$ 输入 GRN,然后通过 Softmax 层生成变量选择权重 $v_{j,t}$,即 $v_{j,t} = \text{Softmax}(GRN_v(\xi_{j,t}

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值