5、梯度下降与线性回归实战指南

梯度下降与线性回归实战指南

1. 特征缩放的重要性及方法

当我们将特征 x 乘以 10 后,观察其前后的横截面,会发现红色曲线变得更陡峭(梯度更大)。这意味着我们必须使用更低的学习率才能安全地沿着曲线下降。更重要的是,红色和黑色曲线的陡峭程度差异增大了,而这正是我们需要避免的,因为学习率的大小受最陡峭曲线的限制。

为了解决这个问题,我们可以使用 StandardScaler 对特征进行缩放。它能将特征转换为均值为 0、标准差为 1 的形式。具体步骤如下:
1. 计算给定特征(x)在训练集(N 个点)上的均值和标准差。
2. 使用这两个值对特征进行缩放。

如果重新计算缩放后特征的均值和标准差,将分别得到 0 和 1。这个预处理步骤通常被称为归一化,但严格来说应称为标准化。

重要提示 :像 StandardScaler 这样的预处理步骤必须在训练 - 验证 - 测试集划分之后进行,否则会将验证集和/或测试集的信息泄露给模型。在仅使用训练集拟合 StandardScaler 后,应使用其 transform() 方法对所有数据集(训练集、验证集和测试集)应用预处理步骤。

以下是代码示例:

scaler = StandardScaler(with_mean=True, with_std=True)
# 仅使用训练集拟合 scaler
scaler.fit(x_train)
# 使用已拟合的 s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值