You are given the set of vectors on the plane, each of them starting at the origin. Your task is to find a pair of vectors with the minimal non-oriented angle between them.
Non-oriented angle is non-negative value, minimal between clockwise and counterclockwise direction angles. Non-oriented angle is always between 0 and π. For example, opposite directions vectors have angle equals to π.
Input
First line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of vectors.
The i-th of the following n lines contains two integers xi and yi (|x|, |y| ≤ 10 000, x2 + y2 > 0) — the coordinates of the i-th vector. Vectors are numbered from 1 to n in order of appearing in the input. It is guaranteed that no two vectors in the input share the same direction (but they still can have opposite directions).
Output
Print two integer numbers a and b (a ≠ b) — a pair of indices of vectors with the minimal non-oriented angle. You can print the numbers in any order. If there are many possible answers, print any.
Examples
Input
4
-1 0
0 -1
1 0
1 1
Output
3 4
Input
6
-1 0
0 -1
1 0
1 1
-4 -5
-4 -6
Output
6 5
[分析]
使用atan2函数算出xy与原点的弧度
sort排序弧度
On遍历,前后两两对比
输出答案和编号
[代码]
#include <iostream>
#include <cstring>
#include <cmath>
#include <string>
#include <cstdio>
#include <algorithm>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cassert> // assert
#include <vector> // vector类
using namespace std;
#define double long double
const int MAXN = 1e5 + 111;
struct K {
double k;
int id;
bool operator < (const K& t)const
{
return k < t.k;
}
}kk[MAXN];
int main()
{
int n; scanf("%d", &n);
double pi = acos(-1);
int x, y;
for (int i = 1; i <= n; ++i)
{
scanf("%d%d", &x, &y);
kk[i].k = atan2(y, x);
kk[i].id = i;
}
sort(kk + 1, kk + 1 + n);
int ans1 = kk[1].id, ans2 = kk[n].id;
double mi = kk[1].k + 2 * pi - kk[n].k;
for (int i = 1; i < n; ++i)
{
double del = kk[i + 1].k - kk[i].k;
if (del < mi)
{
mi = del;
ans1 = kk[i].id;
ans2 = kk[i + 1].id;
}
}
printf("%d %d\n", ans1, ans2);
return 0;
}