Codeforces #337

A题:

水题,特判是否为奇数,奇数则为0

#include <iostream>
#include <cstdio>

using namespace std;

int main()
{
    int n;
    int a,b;
    while(scanf("%d",&n)==1)
    {
        if(n%2==1)printf("0\n");
        else
        {
            a=n/2;
            b=(a-1)/2;
            printf("%d\n",b);
        }
    }
    return 0;
}


B题:

水题,给出n种颜色的数量,选取一种颜色开始给方块涂色,并按顺序使用这些颜色,直到有颜色没有了,问可以涂多少矩阵。

涂色数量显然受限制最少的颜色数量,要更多涂色则要选择离最少颜色更靠左的颜色开始,记得开头和结尾是相连的。

#include <iostream>
#include <cstdio>
#include <algorithm>

using namespace std;

#define ll long long

const int maxn=200000+10;

ll a[maxn];

int main()
{
    int n;
    ll minv;
    int cot;
    while(scanf("%d",&n)==1)
    {
        minv=2000000000;
        for(int i=0;i<n;i++)
        {
            scanf("%I64d",&a[i]);
            minv=min(minv,a[i]);
        }
        cot=0;
        bool flag=false;
        int temp=0;
        int ans=0;
        for(int i=n-1;i>=0;i--)
        {
            if(a[i]==minv)
            {
                ans=max(ans,cot);
                if(!flag)
                {
                    temp=cot;
                    flag=true;
                }
                cot=0;
            }
            else cot++;
        }
        ans=max(ans,temp+cot);
        printf("%I64d\n",n*minv+ans);
    }
    return 0;
}


C题:

给出k,构建2^k个相互正交的2^k维向量。(向量元素值只有1和-1)(有个叫Hadamard Matrix的矩阵)

在别人助攻下做出来的。

首先假设已经构造了矩阵A(k)

然后A(k+1)=

易证明,这是成立的。

#include <iostream>
#include <cstdio>

using namespace std;

bool ans[10][522][522];

int main()
{
    ans[0][0][0]=0;
    for(int i=1;i<10;i++)
    {
        for(int j=0;j<1<<(i-1);j++)
        {
            for(int k=0;k<1<<(i-1);k++)
            {
                ans[i][j][k]=ans[i][j][k+(1<<(i-1))]=ans[i][j+(1<<(i-1))][k+(1<<(i-1))]=ans[i-1][j][k];
                ans[i][j+(1<<(i-1))][k]=!ans[i-1][j][k];
            }
        }
    }
    int n;
    bool flag=false;
    while(scanf("%d",&n)==1)
    {
        flag=true;
        for(int i=0;i<1<<n;i++)
        {
            for(int j=0;j<1<<n;j++)
                putchar(ans[n][i][j]?'*':'+');
            putchar('\n');
        }
    }
    return 0;
}


 

D题:

线段树+扫描线模板题

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>

using namespace std;

#define lson(i) i<<1
#define rson(i) (i<<1)+1

const int maxn=10 + 2e5;

struct Node
{
    int x1,x2,y;
    int c;
    Node(){}
    Node(int x1,int x2,int y,int c):x1(x1),x2(x2),y(y),c(c){}
    bool operator<(const Node& b)const
    {
        return y>b.y;
    }
}line[maxn<<1];
int sum[maxn<<3];
int flag[maxn<<3];
int x[maxn<<1];
int ql,qr;

void push_up(int i,int l,int r)
{
    if(flag[i])sum[i]=x[r]-x[l-1];
    else if(l==r)sum[i]=0;
    else sum[i]=sum[lson(i)]+sum[rson(i)];
}

void update(int i,int l,int r,int c)
{
    if(ql<=l&&r<=qr)
    {
        flag[i]+=c;
        push_up(i,l,r);
    }
    else
    {
        int m=l+(r-l)/2;
        if(ql<=m)update(lson(i),l,m,c);
        if(m<qr)update(rson(i),m+1,r,c);
        push_up(i,l,r);
    }
}

int bfind(int l,int r,int v)
{
    int m;
    while(l<r)
    {
        m=l+(r-l)/2;
        if(x[m]<v)l=m+1;
        else r=m;
    }
    return l;
}

int main()
{
    //printf("%d\n",maxn);
    int n;
    int x1,y1,x2,y2;
    int cot;
    while(scanf("%d",&n)==1)
    {
        cot=0;
        memset(flag,0,sizeof(flag));
        memset(sum,0,sizeof(sum));
        for(int i=0;i<n;i++)
        {
            scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
            if(x1>x2)swap(x1,x2);
            if(y1<y2)swap(y1,y2);
            line[cot]=Node(x1-1,x2,y1,1);
            x[cot++]=x1-1;
            line[cot]=Node(x1-1,x2,y2-1,-1);
            x[cot++]=x2;
        }
        sort(x,x+cot);
        sort(line,line+cot);
        int k=0;
        long long ans=0;
        for(int i=1;i<cot;i++)
            if(x[i]!=x[i-1])x[++k]=x[i];
        for(int i=0;i<cot-1;i++)
        {
            ql=bfind(0,k,line[i].x1)+1;
            qr=bfind(0,k,line[i].x2);
            update(1,1,k,line[i].c);
            ans+=(long long)sum[1]*(line[i].y-line[i+1].y);
        }
        printf("%I64d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值