HDU 5768(中国剩余定理+容斥定理)

题目描述:计算(a,b)内能被7整除且不满足给定条件的数有多少个。

首先找出能被7整除的数,再除去能被7整除且满足一个条件的数,这可能会把满足两个条件的数减去两次,所以要加上即为容斥定理。


代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>

using namespace std;

#define ll long long

const int maxn=20;

ll p[maxn];
ll a[maxn];
ll M;int n;
bool vis[maxn];


ll mul_mod(ll a,ll b){
    ll ans=0;
    a%=M,b%=M;
    while(b){
        if(b&1)ans=(ans+a)%M;
        b>>=1;
        a=(a<<1)%M;
    }
    return ans;
}

void gcd(ll a,ll b,ll &d,ll &x,ll& y){
    if(!b){d=a;x=1;y=0;}
    else {gcd(b,a%b,d,y,x);y-=x*(a/b);}
}

ll china(int n,ll *a,ll *m){
    M=1;
    ll d,y,x=0;
    for(int i=0;i<n;i++)if(vis[i])M*=m[i];
    for(int i=0;i<n;i++)if(vis[i]){
        ll w=M/m[i];
        gcd(m[i],w,d,d,y);
        x=(x+mul_mod(mul_mod(y,w),a[i]))%M;
    }
    return (x+M)%M;
}

int main()
{
    int t;
    ll x,y;
    scanf("%d",&t);
    for(int kase=1;kase<=t;kase++){
        scanf("%d %lld %lld",&n,&x,&y);
        p[0]=7;a[0]=0;
        for(int i=1;i<=n;i++){
            scanf("%lld %lld",&p[i],&a[i]);
        }
        int st=1<<n;
        int cot;
        ll ans=0;
        vis[0]=true;
        for(int i=0;i<st;i++){
            cot=0;
            for(int j=1;j<=n;j++){
                if((1<<(j-1))&i){vis[j]=true;cot++;}
                else vis[j]=false;
            }
            ll k1,k2;
            ll A=china(n+1,a,p);
            if(A>y)continue;
            k1=(x-A+M-1)/M;k2=(y-A)/M;
            if(cot%2==0)ans+=k2-k1+1;
            else ans-=k2-k1+1;
        }
        printf("Case #%d: %lld\n",kase,ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值