题面
题意就是给你两个仅包含字符‘a’和‘b’的字符串X,Y,长度<=1e5,问X有多少个不同的字串的与Y的汉明距离不超过K。
汉明距离指的是两个长度相等的字符串,对应位置有多少个不同字符。
首先想下暴力的算法。
设X串下标为0-n,Y串下标为0-m,设F[i]表示X[i..i+m]与Y的汉明距离,很显然就是这样的:
这条式子在看起来很舒服,但并不是显然的卷积,
没有看过《具体数学》的和式级数的我就要水水地继续推公式。
设z[i]=y[m-i]
有i+m-j+j=i+m,这就是一个卷积的形式了,大概就是FFT了。
但这是个bool表达式,并非乘积,就先把X中的a设成1,b设成0,Y中的a设成0,b设成1,做一遍卷积,得到了X串中的a与串的b对答案的贡献,再取反做一次,就得出了每个位置的为开头的字串与Y的汉明距离了。
然后它要求是不同的字串,朴素想法就是哈C判断重复,但我的双哈C,手测大数据时,答案随着模数变化。听别人说这题哈C不用模,用unsigned longlong自然溢出,用set去重,就可以过了。我一想有道理,果断打了过后缀自动机,所以有了长长长的代码,大概是这样的。
先建好自动机,用原串在自动机上跑,倘若当前状态的Min值大于m,则往parent上跳,若该状态没有访问过,这就是一个不同的字串。
我其实开始打NTT,T了我一个早上,我才想起了FFT怎么打。但在我电脑上,极限数据NTT4秒,FFT11秒。
这是妈妈再也不用担心我会T的fft
#include <iostream>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;
#define mmst(a, b) memset(a, b, sizeof(a))
#define mmcp(a, b) memcpy(a, b, sizeof(b))
typedef long long LL;
const int N=(1<<18)+15,oo=1e9;
const double pi=acos(-1);
struct yy
{
double x,y;
yy(double a=0,double b=0):x(a),y(b){}
};
yy operator +(yy a,yy b) {return yy(a.x+b.x,a.y+b.y);}
yy operator -(yy a,yy b) {return yy(a.x-b.x,a.y-b.y);}
yy operator *(yy a,yy b) {return yy(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
int n,rev[N];
yy omega[N][2];
void init(int lim)
{
int k=-1;
n=1;
while(n<=lim)
n<<=1,k++;
for(int i=0;i<n;i++)
rev[i]=(rev[i>>1]>>1) | ((i&1)<<k);
for(int i=0;i<n;i++)
{
omega[i][1]=yy(cos(2*pi*i/n),sin(2*pi*i/n));
omega[i][0]=yy(cos(2*pi*i/n),-sin(2*pi*i/n));
}
}
void fft(yy *a,int ops)
{
for(int i=0;i<n;i++)
if(i<rev[i])
swap(a[i],a[rev[i]]);
for(int l=2;l<=n;l<<=1)
{
int m=l>>1;
for(int i=0;i<n;i+=l)
for(int k=0;k<m;k++)
{
yy t=a[i+k+m]*omega[n/l*k][ops];
a[i+k+m]=a[i+k]-t;
a[i+k]=a[i+k]+t;
}
}
if(!ops)
for(int i=0;i<n;i++)
a[i].x=a[i].x/n;
}
int T,res,hanming;
char x[N],y[N];
yy aa[N],bb[N];
LL ans[N];
const int big=200200;
int pre[big],dep[big],son[big][2];
bool used[big];
int last,cur;
void Insert(int x)
{
dep[++cur]=dep[last]+1;
int np=cur,p=last;
last=cur;
for(;!son[p][x];p=pre[p])
son[p][x]=np;
if(!p)
pre[np]=1;
else
{
int q=son[p][x];
if(dep[q]==dep[p]+1)
pre[np]=q;
else
{
dep[++cur]=dep[p]+1;
int nq=cur;
pre[nq]=pre[q];
pre[q]=pre[np]=nq;
mmcp(son[nq],son[q]);
for(;son[p][x]==q;p=pre[p])
son[p][x]=nq;
}
}
}
int main()
{
for(;;)
{
T++;
cin>>hanming;
if(hanming==-1)
return 0;
scanf("%s",x);
scanf("%s",y);
int nn=strlen(x);
int mm=strlen(y);
nn--;
mm--;
init(nn*2+10);
res=0;
for(int i=0;i<n;i++)
aa[i].x=aa[i].y=bb[i].x=bb[i].y=0.0;
for(int i=0;i<=nn;i++)
if(x[i]=='a')
aa[i].x=0.0;
else
aa[i].x=1.0;
for(int i=0;i<=mm;i++)
if(y[mm-i]=='a')
bb[i].x=1.0;
else
bb[i].x=0.0;
fft(aa,1);
fft(bb,1);
for(int i=0;i<n;i++)
aa[i]=aa[i]*bb[i];
fft(aa,0);
for(int i=mm;i<=nn;i++)
ans[i]=floor(aa[i].x+0.3);
for(int i=0;i<n;i++)
aa[i].x=aa[i].y=bb[i].x=bb[i].y=0.0;
for(int i=0;i<=nn;i++)
if(x[i]=='a')
aa[i]=1.0;
else
aa[i]=0.0;
for(int i=0;i<=mm;i++)
if(y[mm-i]=='a')
bb[i]=0.0;
else
bb[i]=1.0;
fft(aa,1);
fft(bb,1);
for(int i=0;i<n;i++)
aa[i]=aa[i]*bb[i];
fft(aa,0);
for(int i=mm;i<=nn;i++)
ans[i]+=floor(aa[i].x+0.3);
int nnn=nn*2+30;
cur=last=1;
for(int i=0;i<nnn;i++)
{
son[i][0]=son[i][1]=pre[i]=dep[i]=0;
used[i]=0;
}
for(int i=0;i<=nn;i++)
Insert(x[i]-'a');
int now=1,hh=mm;
for(int i=0;i<=mm;i++)
now=son[now][x[i]-'a'];
for(;hh<=nn;)
{
while(dep[pre[now]]+1>mm+1)
now=pre[now];
if(!used[now])
{
if(ans[hh]<=hanming)
res++;
used[now]=1;
}
hh++;
now=son[now][x[hh]-'a'];
}
printf("Case %d: %d\n",T,res);
}
return 0;
}
这是删了全部语句,只留NTT还是T的NTT
#include <iostream>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;
#define mmst(a, b) memset(a, b, sizeof(a))
#define mmcp(a, b) memcpy(a, b, sizeof(b))
typedef long long LL;
const int N=(1<<19)+5;
const LL mo=1004535809,g=3;
int n,rev[N];
LL cheng(LL a,LL b,LL p)
{
LL res=1ll;
for(;b;b>>=1,a=a*a%p)
if(b&1)
res=res*a%p;
return res;
}
void init(int lim)
{
int k=-1;
n=1;
while(n<lim)
n<<=1,k++;
for(int i=0;i<n;i++)
rev[i]=(rev[i>>1] >> 1) | ((i&1)<<k);
}
void ntt(LL *a,bool ops)
{
for(int i=0;i<n;i++)
if(i<rev[i])
swap(a[i],a[rev[i]]);
for(int l=2;l<=n;l<<=1)
{
int m=(l>>1);
LL wn;
if(ops)
wn=cheng(g,(mo-1)/l,mo);
else
wn=cheng(g,mo-1-(mo-1)/l,mo);
for(int i=0;i<n;i+=l)
{
LL w=1;
for(int k=0;k<m;k++)
{
LL t=a[i+k+m]*w%mo;
a[i+k+m]=(a[i+k]-t+mo)%mo;
a[i+k]=(a[i+k]+t)%mo;
w=w*wn%mo;
}
}
}
if(!ops)
{
LL Inv=cheng(n,mo-2,mo);
for(int i=0;i<n;i++)
a[i]=a[i]*Inv%mo;
}
}
int T,res,hanming;
char x[N],y[N];
LL aa[N],bb[N];
LL ans[N];
/*
const int big=200200;
int pre[big],dep[big],son[big][2];
bool used[big];
int last,cur;
void Insert(int x)
{
dep[++cur]=dep[last]+1;
int np=cur,p=last;
last=cur;
for(;!son[p][x];p=pre[p])
son[p][x]=np;
if(!p)
pre[np]=1;
else
{
int q=son[p][x];
if(dep[q]==dep[p]+1)
pre[np]=q;
else
{
dep[++cur]=dep[p]+1;
int nq=cur;
pre[nq]=pre[q];
pre[q]=pre[np]=nq;
mmcp(son[nq],son[q]);
for(;son[p][x]==q;p=pre[p])
son[p][x]=nq;
}
}
}
*/
int main()
{
for(;;)
{
T++;
cin>>hanming;
if(hanming==-1)
return 0;
scanf("%s",x);
scanf("%s",y);
int nn=strlen(x);
int mm=strlen(y);
nn--;
mm--;
init(nn*2+10);
/*
res=0;
for(int i=0;i<n;i++)
aa[i]=bb[i]=0;
for(int i=0;i<=nn;i++)
if(x[i]=='a')
aa[i]=0;
else
aa[i]=1;
for(int i=0;i<=mm;i++)
if(y[mm-i]=='a')
bb[i]=1;
else
bb[i]=0;
*/
ntt(aa,1);
ntt(bb,1);
// for(int i=0;i<n;i++)
// aa[i]=aa[i]*bb[i]%mo;
ntt(aa,0);
/*
for(int i=mm;i<=nn;i++)
ans[i]=aa[i];
for(int i=0;i<n;i++)
aa[i]=bb[i]=0;
for(int i=0;i<=nn;i++)
if(x[i]=='a')
aa[i]=1;
else
aa[i]=0;
for(int i=0;i<=mm;i++)
if(y[mm-i]=='a')
bb[i]=0;
else
bb[i]=1;
*/
ntt(aa,1);
ntt(bb,1);
// for(int i=0;i<n;i++)
// aa[i]=aa[i]*bb[i]%mo;
ntt(aa,0);
/*
for(int i=mm;i<=nn;i++)
ans[i]+=aa[i];
int nnn=nn*2+30;
cur=last=1;
for(int i=0;i<nnn;i++)
{
son[i][0]=son[i][1]=pre[i]=dep[i]=0;
used[i]=0;
}
for(int i=0;i<=nn;i++)
Insert(x[i]-'a');
int now=1,hh=mm;
for(int i=0;i<=mm;i++)
now=son[now][x[i]-'a'];
for(;hh<=nn;)
{
while(dep[pre[now]]+1>mm+1)
now=pre[now];
if(!used[now])
{
if(ans[hh]<=hanming)
res++;
used[now]=1;
}
hh++;
now=son[now][x[hh]-'a'];
}
printf("Case %d: %d\n",T,res);*/
}
return 0;
}