UVALive4671(FFT/NTT+后缀自动机/哈C)

博客介绍了如何利用快速傅里叶变换(FFT)和后缀自动机来解决一个关于汉明距离不超过K的不同子串问题。首先通过将字符串转换为二进制表示并进行卷积计算贡献,然后利用后缀自动机去除重复的子串。文章提到了在处理大数据时,使用无模运算和集合去重的技巧,以及对比了NTT和FFT在效率上的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题面
题意就是给你两个仅包含字符‘a’和‘b’的字符串X,Y,长度<=1e5,问X有多少个不同的字串的与Y的汉明距离不超过K。
汉明距离指的是两个长度相等的字符串,对应位置有多少个不同字符。

首先想下暴力的算法。
设X串下标为0-n,Y串下标为0-m,设F[i]表示X[i..i+m]与Y的汉明距离,很显然就是这样的:

f[i]=j=0m[x[i+j]==y[j]]

这条式子在看起来很舒服,但并不是显然的卷积,
没有看过《具体数学》的和式级数的我就要水水地继续推公式。
设z[i]=y[m-i]
f[i]=j=0m[x[i+mj]==z[j]]

有i+m-j+j=i+m,这就是一个卷积的形式了,大概就是FFT了。

但这是个bool表达式,并非乘积,就先把X中的a设成1,b设成0,Y中的a设成0,b设成1,做一遍卷积,得到了X串中的a与串的b对答案的贡献,再取反做一次,就得出了每个位置的为开头的字串与Y的汉明距离了。

然后它要求是不同的字串,朴素想法就是哈C判断重复,但我的双哈C,手测大数据时,答案随着模数变化。听别人说这题哈C不用模,用unsigned longlong自然溢出,用set去重,就可以过了。我一想有道理,果断打了过后缀自动机,所以有了长长长的代码,大概是这样的。

先建好自动机,用原串在自动机上跑,倘若当前状态的Min值大于m,则往parent上跳,若该状态没有访问过,这就是一个不同的字串。

我其实开始打NTT,T了我一个早上,我才想起了FFT怎么打。但在我电脑上,极限数据NTT4秒,FFT11秒。

这是妈妈再也不用担心我会T的fft

#include <iostream>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>

using namespace std;
#define mmst(a, b) memset(a, b, sizeof(a))
#define mmcp(a, b) memcpy(a, b, sizeof(b))

typedef long long LL;

const int N=(1<<18)+15,oo=1e9;
const double pi=acos(-1);

struct yy
{
    double x,y;
    yy(double a=0,double b=0):x(a),y(b){}
};

yy operator +(yy a,yy b) {return yy(a.x+b.x,a.y+b.y);}
yy operator -(yy a,yy b) {return yy(a.x-b.x,a.y-b.y);}
yy operator *(yy a,yy b) {return yy(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}

int n,rev[N];
yy omega[N][2];

void init(int lim)
{
    int k=-1;
    n=1;
    while(n<=lim)
    n<<=1,k++;

    for(int i=0;i<n;i++)
    rev[i]=(rev[i>>1]>>1) | ((i&1)<<k);

    for(int i=0;i<n;i++)
    {
        omega[i][1]=yy(cos(2*pi*i/n),sin(2*pi*i/n));
        omega[i][0]=yy(cos(2*pi*i/n),-sin(2*pi*i/n));
    }
}

void fft(yy *a,int ops)
{
    for(int i=0;i<n;i++)
    if(i<rev[i])
    swap(a[i],a[rev[i]]);

    for(int l=2;l<=n;l<<=1)
    {
        int m=l>>1;
        for(int i=0;i<n;i+=l)
        for(int k=0;k<m;k++)
        {
            yy t=a[i+k+m]*omega[n/l*k][ops];
            a[i+k+m]=a[i+k]-t;
            a[i+k]=a[i+k]+t;
        }
    }
    if(!ops)
    for(int i=0;i<n;i++)
    a[i].x=a[i].x/n;
}


int T,res,hanming;
char x[N],y[N];
yy aa[N],bb[N];
LL ans[N];

const int big=200200;
int pre[big],dep[big],son[big][2];
bool used[big];
int last,cur;

void Insert(int x)
{
    dep[++cur]=dep[last]+1;
    int np=cur,p=last;
    last=cur;

    for(;!son[p][x];p=pre[p])
    son[p][x]=np;
    if(!p)
    pre[np]=1;
    else
    {
        int q=son[p][x];
        if(dep[q]==dep[p]+1)
        pre[np]=q;
        else
        {
            dep[++cur]=dep[p]+1;
            int nq=cur;
            pre[nq]=pre[q];
            pre[q]=pre[np]=nq;

            mmcp(son[nq],son[q]);
            for(;son[p][x]==q;p=pre[p])
            son[p][x]=nq;
        }
    }
}

int main()
{
    for(;;)
    {

    T++;
    cin>>hanming;
    if(hanming==-1)
    return 0;

    scanf("%s",x);
    scanf("%s",y);

    int nn=strlen(x);
    int mm=strlen(y);
    nn--;
    mm--;
    init(nn*2+10);

    res=0;

    for(int i=0;i<n;i++)
    aa[i].x=aa[i].y=bb[i].x=bb[i].y=0.0;

    for(int i=0;i<=nn;i++)
    if(x[i]=='a')
    aa[i].x=0.0;
    else
    aa[i].x=1.0;

    for(int i=0;i<=mm;i++)
    if(y[mm-i]=='a')
    bb[i].x=1.0;
    else
    bb[i].x=0.0;

    fft(aa,1);
    fft(bb,1);
    for(int i=0;i<n;i++)
    aa[i]=aa[i]*bb[i];
    fft(aa,0);

    for(int i=mm;i<=nn;i++)
    ans[i]=floor(aa[i].x+0.3);

    for(int i=0;i<n;i++)
    aa[i].x=aa[i].y=bb[i].x=bb[i].y=0.0;

    for(int i=0;i<=nn;i++)
    if(x[i]=='a')
    aa[i]=1.0;
    else
    aa[i]=0.0;

    for(int i=0;i<=mm;i++)
    if(y[mm-i]=='a')
    bb[i]=0.0;
    else
    bb[i]=1.0;

    fft(aa,1);
    fft(bb,1);
    for(int i=0;i<n;i++)
    aa[i]=aa[i]*bb[i];
    fft(aa,0);

    for(int i=mm;i<=nn;i++)
    ans[i]+=floor(aa[i].x+0.3);

    int nnn=nn*2+30;
    cur=last=1;
    for(int i=0;i<nnn;i++)
    {
        son[i][0]=son[i][1]=pre[i]=dep[i]=0;
        used[i]=0;
    }

    for(int i=0;i<=nn;i++)
    Insert(x[i]-'a');

    int now=1,hh=mm;
    for(int i=0;i<=mm;i++)
    now=son[now][x[i]-'a'];

    for(;hh<=nn;)
    {
        while(dep[pre[now]]+1>mm+1)
        now=pre[now];
        if(!used[now])
        {
            if(ans[hh]<=hanming)
            res++;
            used[now]=1;
        }
        hh++;
        now=son[now][x[hh]-'a'];
    }

    printf("Case %d: %d\n",T,res);
    }

    return 0;
}

这是删了全部语句,只留NTT还是T的NTT

#include <iostream>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>

using namespace std;
#define mmst(a, b) memset(a, b, sizeof(a))
#define mmcp(a, b) memcpy(a, b, sizeof(b))

typedef long long LL;

const int N=(1<<19)+5;
const LL mo=1004535809,g=3;

int n,rev[N];

LL cheng(LL a,LL b,LL p)
{
    LL res=1ll;
    for(;b;b>>=1,a=a*a%p)
    if(b&1)
    res=res*a%p;
    return res;
} 

void init(int lim)
{
    int k=-1;
    n=1;
    while(n<lim)
    n<<=1,k++;
    for(int i=0;i<n;i++)
    rev[i]=(rev[i>>1] >> 1) | ((i&1)<<k);
}

void ntt(LL *a,bool ops)
{
    for(int i=0;i<n;i++)
    if(i<rev[i])
    swap(a[i],a[rev[i]]);

    for(int l=2;l<=n;l<<=1)
    {
        int m=(l>>1);
        LL wn;
        if(ops)
        wn=cheng(g,(mo-1)/l,mo);
        else
        wn=cheng(g,mo-1-(mo-1)/l,mo);

        for(int i=0;i<n;i+=l)
        {
            LL w=1;
            for(int k=0;k<m;k++)
            {
                LL t=a[i+k+m]*w%mo;
                a[i+k+m]=(a[i+k]-t+mo)%mo;
                a[i+k]=(a[i+k]+t)%mo;
                w=w*wn%mo;
            }
        }
    }
    if(!ops)
    {
        LL Inv=cheng(n,mo-2,mo);
        for(int i=0;i<n;i++)
        a[i]=a[i]*Inv%mo;
    }
}

int T,res,hanming;
char x[N],y[N];
LL aa[N],bb[N];
LL ans[N];
/*
const int big=200200;
int pre[big],dep[big],son[big][2];
bool used[big];
int last,cur;

void Insert(int x)
{
    dep[++cur]=dep[last]+1;
    int np=cur,p=last;
    last=cur;

    for(;!son[p][x];p=pre[p])
    son[p][x]=np;
    if(!p)
    pre[np]=1;
    else
    {
        int q=son[p][x];
        if(dep[q]==dep[p]+1)
        pre[np]=q;
        else
        {
            dep[++cur]=dep[p]+1;
            int nq=cur;
            pre[nq]=pre[q];
            pre[q]=pre[np]=nq;

            mmcp(son[nq],son[q]);
            for(;son[p][x]==q;p=pre[p])
            son[p][x]=nq;
        }
    }
}
*/
int main()
{
    for(;;)
    {

    T++;
    cin>>hanming;
    if(hanming==-1)
    return 0;

    scanf("%s",x);
    scanf("%s",y);

    int nn=strlen(x);
    int mm=strlen(y);
    nn--;
    mm--;
    init(nn*2+10);
/*  
    res=0;

    for(int i=0;i<n;i++)
    aa[i]=bb[i]=0;

    for(int i=0;i<=nn;i++)
    if(x[i]=='a')
    aa[i]=0;
    else
    aa[i]=1;

    for(int i=0;i<=mm;i++)
    if(y[mm-i]=='a')
    bb[i]=1;
    else
    bb[i]=0;
    */
    ntt(aa,1);
    ntt(bb,1);
//  for(int i=0;i<n;i++)
//  aa[i]=aa[i]*bb[i]%mo;
    ntt(aa,0);
/*
    for(int i=mm;i<=nn;i++)
    ans[i]=aa[i];

    for(int i=0;i<n;i++)
    aa[i]=bb[i]=0;

    for(int i=0;i<=nn;i++)
    if(x[i]=='a')
    aa[i]=1;
    else
    aa[i]=0;

    for(int i=0;i<=mm;i++)
    if(y[mm-i]=='a')
    bb[i]=0;
    else
    bb[i]=1;
    */
    ntt(aa,1);
    ntt(bb,1);
//  for(int i=0;i<n;i++)
//  aa[i]=aa[i]*bb[i]%mo;
    ntt(aa,0);
/*  
    for(int i=mm;i<=nn;i++)
    ans[i]+=aa[i];

    int nnn=nn*2+30;
    cur=last=1;
    for(int i=0;i<nnn;i++)
    {
        son[i][0]=son[i][1]=pre[i]=dep[i]=0;
        used[i]=0;
    }

    for(int i=0;i<=nn;i++)
    Insert(x[i]-'a');

    int now=1,hh=mm;
    for(int i=0;i<=mm;i++)
    now=son[now][x[i]-'a'];

    for(;hh<=nn;)
    {
        while(dep[pre[now]]+1>mm+1)
        now=pre[now];
        if(!used[now])
        {
            if(ans[hh]<=hanming)
            res++;
            used[now]=1;
        }
        hh++;
        now=son[now][x[hh]-'a'];
    }

    printf("Case %d: %d\n",T,res);*/
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值