BZOJ3601:一个人的数论(莫比乌斯反演+伯努利数)

题面

题意:给出d和n(n以分解质因数给出),问所有与n互质的数的d次幂之和,即

xxd[gcd(x,n)==1] ∑ x x d [ g c d ( x , n ) == 1 ]

套路推♂倒

=i|nμ(i)idx=1nixd = ∑ i | n μ ( i ) ∗ i d ∗ ∑ x = 1 n i x d

fa♂现最右边是个幂和,设为 h(ni) h ( n i ) ,整个就是一个狄利克雷卷积。

根据题目n以分解质因数输入的套路,应该是找到积性函数,然后一个个质因数乘起来
μ(i)id μ ( i ) ∗ i d 是积性的,但是幂和应该不是积性的。

dyh的ppt告诉我们,幂和是一个多项式,而多项式的每一项显然是积性的
所以我们分开每一项来做,最后求和。

对于 xi x i ,系数为 1d+1Bdi+1Cdi+1d+1 1 d + 1 ∗ B d − i + 1 ∗ C d + 1 d − i + 1 ,设为 ai a i
(伯努利数递推求出)

则原式为

i=1d+1aic|nμ(c)cd(nc)i ∑ i = 1 d + 1 a i ∑ c | n μ ( c ) ∗ c d ∗ ( n c ) i
g[n]=c|nμ(c)cd(nc)i g [ n ] = ∑ c | n μ ( c ) ∗ c d ∗ ( n c ) i ,由于积性,仅考虑 g[pq] g [ p q ] 的值

g[pq]=j=0qμ(pj)pjdpqiji g [ p q ] = ∑ j = 0 q μ ( p j ) ∗ p j d ∗ p q i − j i

仅当j取0和1时有贡献
g[pq]=pqipqi+di g [ p q ] = p q i − p q i + d − i

我是看到高斯消元才点开这题的,AC了也没想懂这怎么是高斯消元。
刚才下去买零食看到L指导
才想起他曾讲过
幂和如果不记得
就打高斯消元

#include <iostream>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>

using namespace std;
#define mmst(a, b) memset(a, b, sizeof(a))
#define mmcp(a, b) memcpy(a, b, sizeof(b))

typedef long long LL;

const LL mo=1e9+7;
const LL N=100010;

LL d,w;
LL a[N],p[N];
LL Ijc[N],I[N],jc[N];
LL B[N],A[N];
LL ans;

LL cheng(LL a,LL b)
{
    LL res=1;
    for(;b;b>>=1,a=a*a%mo)
    if(b&1)
    res=res*a%mo;
    return res;
}

int main()
{
    cin>>d>>w;
    for(int i=1;i<=w;i++)
    scanf("%lld%lld",&p[i],&a[i]);

    I[1]=Ijc[0]=jc[0]=1;

    for(int i=2;i<N;i++)
    I[i]=I[mo%i]*(mo-mo/i)%mo;

    for(int i=1;i<N;i++)
    jc[i]=jc[i-1]*i%mo,Ijc[i]=Ijc[i-1]*I[i]%mo;

    B[0]=1;
    for(int i=1;i<=2000;i++)
    {
        for(int j=0;j<i;j++)
        B[i]=(B[i]+jc[i+1]*Ijc[j]%mo*Ijc[i+1-j]%mo*B[j]%mo)%mo;
        B[i]=(mo-B[i])%mo;
        B[i]=B[i]*I[i+1]%mo;
    }

    for(int i=0;i<=d;i++)
    A[d+1-i]=I[d+1]*jc[d+1]%mo*Ijc[i]%mo*Ijc[d+1-i]%mo*B[i]%mo;

    for(int i=1;i<=d+1;i++)
    {
        LL g=1;
        for(int j=1;j<=w;j++)
        {
            LL tu=cheng(cheng(p[j],a[j]),i);
            LL hy=(tu-tu*cheng(p[j],d)%mo*cheng(cheng(p[j],i),mo-2)%mo+mo)%mo;
            g=g*hy%mo;
        }
        ans=(ans+g*A[i])%mo;
    }

    cout<<ans<<endl;

    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值