曾经在XX之星的复赛里,有一道数位dp,但我不会珍惜,然后那场比赛就当放了个屁。
曾经在省选前跟L-leader做了一套dp,听他讲了补偿转移…….然而我什么都不记得了,也许这题就是低配版的补偿转移。
然后现在noip模拟看到这题,我还是完全懵逼,我还是太lowbit了。
给出一个长度为N由B、W、X三种字符组成的字符串S,你需要把每一个X染成B或W中的一个。
对于给出的K,问有多少种染色方式使得存在整数a,b,c,d使得:
1<=a<=b<c<=d<=N
Sa,Sa+1,…,Sb均为B
Sc,Sc+1,…,Sd均为W
其中b=a+K-1,d=c+K-1
ans模1e9+7。
假设只需要一段k个B,我们可以枚举这k个B的位置,假设是[i,i+k-1]。这个区间外有l个X,则这对答案的贡献有2^l。
倘若第i-1位也选了B,则区间[i,i+k-1]的贡献被[i-1,i-k-2]完全包含,即区间[i,i+k-1]有贡献的条件是i-1位不能选B。
原问题看起来就是一个数位dp之类的东西。与答案有关的状态只有3种,分别是
1、没有一段k个B。
2、有一段k个B,但没有k个W。
3、有一段k个B,且在其后面有一段k个W。
分别用F,G,H表示,依然有上述结论,故用0表示该位选了B,1表示选了W。
枚举第i位选了什么,则F[i],G[i],H[i]都可以从i-1转移得来。
G[i][0]可从F[i-k][1]转移得来。
H[i][1]可从G[i-k][0]转移得来。
然后还有很精髓的一步,由于由i-1转移时是XJB转移的,可能F已经转移成为G了,故要减去能转移成为G的方案数。
G变成H也是同理。
#include <iostream>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <cstdio>