bzoj2958(DP,补偿转移)

博客讲述了如何利用补偿转移解决bzoj2958问题,这是一个涉及数位动态规划的字符串染色题目。作者回顾了在竞赛中遇到类似问题的经历,并详细解释了如何构建状态转移方程,包括F、G、H三个状态的定义,以及在状态转移过程中如何处理X字符和避免重复计数。

曾经在XX之星的复赛里,有一道数位dp,但我不会珍惜,然后那场比赛就当放了个屁。

曾经在省选前跟L-leader做了一套dp,听他讲了补偿转移…….然而我什么都不记得了,也许这题就是低配版的补偿转移。

然后现在noip模拟看到这题,我还是完全懵逼,我还是太lowbit了。

题面

给出一个长度为N由B、W、X三种字符组成的字符串S,你需要把每一个X染成B或W中的一个。
对于给出的K,问有多少种染色方式使得存在整数a,b,c,d使得:
1<=a<=b<c<=d<=N
Sa,Sa+1,…,Sb均为B
Sc,Sc+1,…,Sd均为W
其中b=a+K-1,d=c+K-1
ans模1e9+7。

假设只需要一段k个B,我们可以枚举这k个B的位置,假设是[i,i+k-1]。这个区间外有l个X,则这对答案的贡献有2^l。
倘若第i-1位也选了B,则区间[i,i+k-1]的贡献被[i-1,i-k-2]完全包含,即区间[i,i+k-1]有贡献的条件是i-1位不能选B。

原问题看起来就是一个数位dp之类的东西。与答案有关的状态只有3种,分别是
1、没有一段k个B。
2、有一段k个B,但没有k个W。
3、有一段k个B,且在其后面有一段k个W。
分别用F,G,H表示,依然有上述结论,故用0表示该位选了B,1表示选了W。

枚举第i位选了什么,则F[i],G[i],H[i]都可以从i-1转移得来。
G[i][0]可从F[i-k][1]转移得来。
H[i][1]可从G[i-k][0]转移得来。

然后还有很精髓的一步,由于由i-1转移时是XJB转移的,可能F已经转移成为G了,故要减去能转移成为G的方案数。
G变成H也是同理。

#include <iostream>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>

using
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值