题意:给你两个字符串,在两个字符串中各取出一个子串,问使得这两个子串相同的方案数。两个方案不同当且仅当这两个子串中有一个位置不同。
字符串只会SAM的我终于找到了1道一眼题。
将两个串建出广义SAM,每个状态对于两个串分别求出一个Right集,
记为r1与r2。
每个状态的贡献就为 r1∗r2∗(max−min+1) 。
而对于广义SAM,我的XJB建法会出现很多空状态(就是max-min+1=0的状态)
以前想过是对计数大概没什么影响。
但是我发现了,本来求Right集大小可以将状态排序,由dep大的向dep小的更新。
但对于广义SAM,就要老老实实用dfs求了。
因为存在相同的dep使得更新的顺序乱了。(吓得我还以为SAM建错了)
#include <iostream>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;
#define mmst(a, b) memset(a, b, sizeof(a))
#define mmcp(a, b) memcpy(a, b, sizeof(b))
typedef long long LL;
const int N=800800;
int n;
int son[N][26],dep[N],pre[N],r[N][2],cnt=1,last=1;
int head[N],to[N],nex[N],cur;
char cc[N];
LL ans;
void add(int u,int v)
{
to[++cur]=v;
nex[cur]=head[u];
head[u]=cur;
}
void dfs(int x)
{
for(int h=head[x];h;h=nex[h])
{
dfs(to[h]);
r[x][0]+=r[to[h]][0];
r[x][1]+=r[to[h]][1];
}
}
void insert(int x,int ops)
{
dep[++cnt]=dep[last]+1;
int np=cnt,p=last;
last=cnt;
r[cnt][ops]=1;
for(;!son[p][x];p=pre[p])
son[p][x]=np;
if(!p)
pre[np]=1;
else
{
int q=son[p][x];
if(dep[p]+1==dep[q])
pre[np]=q;
else
{
dep[++cnt]=dep[p]+1;
int nq=cnt;
pre[nq]=pre[q];
pre[q]=pre[np]=nq;
mmcp(son[nq],son[q]);
for(;son[p][x]==q;p=pre[p])
son[p][x]=nq;
}
}
}
int main()
{
scanf("%s",cc);
n=strlen(cc);
for(int i=0;i<n;i++)
insert(cc[i]-'a',0);
last=1;
scanf("%s",cc);
n=strlen(cc);
for(int i=0;i<n;i++)
insert(cc[i]-'a',1);
for(int i=2;i<=cnt;i++)
add(pre[i],i);
dfs(1);
for(int i=2;i<=cnt;i++)
ans+=(LL)r[i][0]*r[i][1]*(LL)(dep[i]-dep[pre[i]]);
cout<<ans<<endl;
return 0;
}