几个人一起出去吃饭是常有的事。
但在结帐的时候,常常会出现一些争执。
现在有 n 个人出去吃饭,他们总共消费了 S 元。
其中第 i 个人带了 ai元。
幸运的是,所有人带的钱的总数是足够付账的,但现在问题来了:每个人分别要出多少钱呢?
为了公平起见,我们希望在总付钱量恰好为 S的前提下,最后每个人付的钱的标准差最小。
这里我们约定,每个人支付的钱数可以是任意非负实数,即可以不是 11 分钱的整数倍。
你需要输出最小的标准差是多少。
标准差的介绍:标准差是多个数与它们平均数差值的平方平均数,一般用于刻画这些数之间的“偏差有多大”。
形式化地说,设第 i 个人付的钱为 bi 元,那么标准差为 :
输入格式
第一行包含两个整数 n、S;
第二行包含 n 个非负整数 a1,…,an。
输出格式
输出最小的标准差,四舍五入保留 4位小数。
数据范围
1≤n≤5×105
0≤ai≤109
0≤S≤1015输入样例1:
5 2333 666 666 666 666 666
输出样例1:
0.0000
输入样例2:
10 30 2 1 4 7 4 8 3 6 4 7
输出样例2:
0.7928
难度:中等 时/空限制:1s / 64MB 总通过数:3640 总尝试数:11834 来源:第九届蓝桥杯省赛C++A组,第九届蓝桥杯省赛JAVAA组 算法标签
最后一个测试数据精度特别烦,
#include <bits/stdc++.h>
using namespace std;
long long a[500010];
int main() {
int n;
long long s;
cin >> n >> s;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
//开始贪心选择
sort(a, a + n); //排序,从小到大
double avg = 1.0 * s / n;
double sum = 0.0;
for (int i = 0; i < n; i++) {
if (a[i] * (n - i) < s) { //把钱全拿出的人
sum += (a[i] - avg) * (a[i] - avg);
s -= a[i]; //更新还差多少钱
} else { //不需要把钱全拿出的人。剩下的人中,钱最少的人都可以达到cur_avg
double cur_avg = 1.0 * s / (n - i); //注意这里的s是还差多少钱
sum += (cur_avg - avg) * (cur_avg - avg) * (n - i); //如果这个人有钱付,那么后面的人一定也能付,所以直接乘后面的人数(n - i)即可
break;
}
}
printf("%.4f", sqrt(sum / n));
return 0;
}