Dylans loves sequence
Dylans得到了 N 个数 a[1]...a[N] 。 有 Q 个问题,每个问题形如 (L,R) 他需要求出 L−R 这些数中的逆序对个数。 更加正式地,他需要求出二元组 (x,y) 的个数,使得 L≤x,y≤R 且 x<y 且 a[x]>a[y]
第一行有两个数 N 和 Q 。 第二行给出 N 个数字 a[1]...a[N] 。 接下来的 Q 行,每行给出两个数 L,R 。 N≤1000,Q≤100000,L≤R,1≤a[i]≤231−1
对于每个询问,输出逆序对个数。
3 2 3 2 1 1 2 1 3
1 3
代码:
#include<stdio.h>
#include<string.h>
int Ans[1005][1005], Mark[1005][1005], value[1005];
int main()
{
int n, q, l, r;
while(scanf("%d %d", &n, &q) != EOF)
{
for(int i = 1; i <= n; i++)
scanf("%d", &value[i]);
memset(Mark, 0, sizeof(Mark));
memset(Ans, 0, sizeof(Ans));
for(int i = 1; i <= n; i++)
for(int j = 1; j <= i; j++)
if(value[j] > value[i]) Mark[i][j] += (Mark[i][j-1] + 1);
else Mark[i][j] = Mark[i][j-1];
for(int i = 1; i <= n; i++)
for(int j = i; j <= n; j++)
Ans[i][j] += Ans[i][j-1] + (Mark[j][j-1] - Mark[j][i-1]);
while(q--)
{
scanf("%d %d", &l, &r);
printf("%d\n", Ans[l][r]);
}
}
}