树的存储结构:双亲表示法、孩子表示法、孩子兄弟表示法
二叉树特点:
1.每个结点最多有两颗子树,所以二叉树中不存在度大于2的结点。注意不是只有两颗子树,而是最多有。没有子树或者有一颗子树都是可以的。
2.左子树和右子树是有顺序的,次序不能任意颠倒。就像是人是双手、双脚,但显然左手、左脚和右手、右脚是不一样的,右手戴做手套、右脚穿左鞋都会机器别扭和难受。
3.即使树中某结点只有一颗子树,也要区分它是左子树还是右子树。
完全二叉树
对一颗具有n个结点的二叉树按层序编号,如果编号为i(1<= i <=n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这颗二叉树称为完全二叉树
完全二叉树的特点:
(1)叶子节点只能出现在最下两层。
(2)最下层的叶子一定集中在左部连续位置
(3)倒数第二层若有叶子节点,一定都在右部连续位置。
(4)如果结点度为1,则该结点只有左孩子,即不存在只有右子树的情况
(5)同样结点数的二叉树,完全二叉树的深度最小
二叉树的性质
性质1:在二叉树的第i层上至多有2(i-1)个结点,(()里是指数)
性质2:深度为k的二叉树至多有2(k)-1个结点
性质3:对于任何一颗二叉树T,如果其终端结点数为n0,度为2的结点树为n2,则n0=n2+1.