python必备基础代码-【Python基础系列】常见的数据预处理方法(附代码)

本文介绍了Python中数据预处理的基本操作,包括使用pandas加载各种格式数据,合并CSV文件,拆分大文件,查看数据信息,处理缺失值(如统计、删除和填充)以及异常值识别与处理。此外,还涉及描述性变量转换为数值型以及训练集测试集的划分方法。
摘要由CSDN通过智能技术生成

本文简单介绍python中一些常见的数据预处理,包括数据加载、缺失值处理、异常值处理、描述性变量转换为数值型、训练集测试集划分、数据规范化。

1、 加载数据

1.1 数据读取

数据格式有很多,介绍常见的csv,txt,excel以及数据库mysql中的文件读取import pandas as pd

data = pd.read_csv(r'../filename.csv')#读取csv文件

data = pd.read_table(r'../filename.txt')#读取txt文件

data = pd.read_excel(r'../filename.xlsx') #读取excel文件

# 获取数据库中的数据

import pymysql

conn = pymysql.connect(host='localhost',user='root',passwd='12345',db='mydb')#连接数据库,注意修改成要连的数据库信息

cur = conn.cursor()#创建游标

cur.execute("select * from train_data limit 100")#train_data是要读取的数据名

data = cur.fetchall()#获取数据

cols = cur.description#获取列名

conn.commit()#执行

cur.close()#关闭游标

conn.close()#关闭数据库连接

col = []

for i in cols:

col.append(i[0])

data = list(map(list,data))

data = pd.DataFrame(data,columns=col)

1.2 CSV文件合并

实际数据可能分布在一个个的小的csv或者txt文档,而建模分析时可能需要读取所有数据,这时呢,需要将一个个小的文档合并到一个文件中#合并多个csv文件成一个文件

import glob

#合并

def hebing():

csv_list = glob.glob('*.csv') #查看同文件夹下的csv文件数

print(u'共发现%s个CSV文件'% len(csv_list))

print(u'正在处理............')

for i in csv_list: #循环读取同文件夹下的csv文件

fr = open(i,'rb').read()

with open('result.csv','ab') as f: #将结果保存为result.csv

f.write(fr)

print(u'合并完毕!')

#去重

def quchong(file):

df = pd.read_csv(file,header=0)

datalist = df.drop_duplicates()

datalist.to_csv(file)

if __name__ == '__main__':

hebing()

quchong("result.csv.csv")

1.3 CSV文件拆分

对于一些数据量比较大的文件,想直接读取或者打开比较困难,介绍一个可以拆分数据的方法吧,方便查看数据样式以及读取部分数据##csv比较大,打不开,将其切分成一个个小文件,看数据形式

f = open('NEW_Dat

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值