机器学习-离线运算

本文探讨了机器学习中的离线Pipeline,它用于整合多种算法以实现高效批量处理。Pipeline通过将不同步骤串联,使得大数据分析和深度学习任务能够在Spark等平台上便捷地进行离线运算。
摘要由CSDN通过智能技术生成

pipeline:通道
作用:整合其它算法一起执行

import org.ansj.recognition.impl.StopRecognition
import org.ansj.splitWord.analysis.ToAnalysis
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{HashingTF, IDF}
import org.apache.spark.sql.SparkSession

import scala.util.matching.Regex

/***
  * 判断评论是正向还是负向的
  */
object PipelineDemo {
  def main(args: Array[String]): Unit = {
    //读取数据
    val spark = SparkSession.builder()
      .appName("news")
      .master("local")
      .getOrCreate()
    //读取的文件是txt格式的 最好用spark.contxt方式去读取
    val sc = spark.sparkContext
    //读取负极
    val negData = sc.textFile("data\\news\\trainNeg.txt").map((_,1))
    //读取积极
    val posData = sc.textFile("data\\news\\trainPos.txt").map((_,1))
    //将两个集合结合在一起
    val newsData = negData 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值