棋盘问题
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 19935 | Accepted: 9933 |
Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1 #. .# 4 4 ...# ..#. .#.. #... -1 -1
Sample Output
2 1
Source Code Problem: 1321 Memory: 204K Time: 16MS Language: C++ Result: Accepted Source Code #include<iostream> #include<math.h> using namespace std; int sum=0; int n,k; int x[9]; char mg[9][9]; bool place(int f) { for(int j=0;j<f;j++) if(x[j]==x[f]) return false; return true; } void backtrack(int t,int count) { if(count==k) { sum++; return; } if(t>=n || (n-t)+count<k) return; for(int i=0;i<n;i++) { x[t]=i; if(mg[t][i]=='#' && place(t)) backtrack(t+1,count+1);; } x[t]=-1; backtrack(t+1,count); } int main() { while(true) { scanf("%d %d",&n,&k); if(n==-1 && k==-1) break; for(int i=0;i<n;i++) scanf("%s",mg[i]); backtrack(0,0); printf("%d\n",sum); sum=0; } system("pause"); return 0; }