poj 1321 棋盘问题 递归运算

53 篇文章 0 订阅
36 篇文章 0 订阅
棋盘问题
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 19935 Accepted: 9933

Description

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。

Input

输入含有多组测试数据。 
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n 
当为-1 -1时表示输入结束。 
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。 

Output

对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。

Sample Input

2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1

Sample Output

2
1
 
Source Code

Problem: 1321		
Memory: 204K		Time: 16MS
Language: C++		Result: Accepted
Source Code
#include<iostream>
#include<math.h>
using namespace std;
int sum=0;
int n,k;
int x[9];
char mg[9][9];
bool place(int f)
{
   for(int j=0;j<f;j++)
     if(x[j]==x[f])
           return false;
     return true;         
}
void backtrack(int t,int count)
{
    if(count==k)
    {
      sum++;
      return;
    }
    if(t>=n || (n-t)+count<k)
      return;
    for(int i=0;i<n;i++)
    {
             x[t]=i;
             if(mg[t][i]=='#' && place(t))
               backtrack(t+1,count+1);;     
    }
    x[t]=-1;
    backtrack(t+1,count); 
}
int main()
{
    while(true)
    {
       scanf("%d %d",&n,&k);
       if(n==-1 && k==-1)
         break;
       for(int i=0;i<n;i++)
          scanf("%s",mg[i]);
       backtrack(0,0);
       printf("%d\n",sum);
       sum=0;
    }
    system("pause");
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值